Андрей Смирнов
Время чтения: ~8 мин.
Просмотров: 0

Гост en 673-2016 стекло и изделия из него. методы определения тепловых характеристик. метод расчета сопротивления теплопередаче

Термическое сопротивление — стенка

Термические сопротивления стенки и загрязнений находят в зависимости от толщины собственно стенки и толщины слоя загрязнений ( по практическим данным), а также от значений коэффициентов теплопроводности материала стенки и загрязнений.

Термическое сопротивление стенки понижает К.

Термические сопротивления стенки и ртути пренебрежимо малы по сравнению с внешним термическим сопротивлением, так что постоянная времени представляет собой произведение внешнего термического сопротивления на тепловую емкость стенки и ртути. Теплопередачей через торец термобаллона пренебрегаем.

Термические сопротивления стенки и загрязнений находят в зависимости от толщины собственно стенки и толщины слоя загрязнений ( по практическим данным), а также от значений коэффициентов теплопроводности материала стенки и загрязнений.

Термическое сопротивление стенки вместе с сопротивлением теплообмену на внутренней поверхности стенки обусловливают снижение температуры наружной поверхности приборов по сравнению с температурой теплоносителя. Из рис. 4.14 видно, что в средней по высоте части чугунного секционного радиатора температура поверхности отличается от температуры теплоносителя не менее чем на 7 — 8 С.

Зависимость сопротивления теплообмену на внутренней поверхности стенки /. в от расхода теплоносителя G и внутреннего диаметра трубы dB.

Термическое сопротивление стенки вместе с сопротивлением теплообмену на ее внутренней поверхности обусловливают снижение температуры наружной поверхности приборов по сравнению с температурой теплоносителя.

Однократно перекрестное движение сред в теплообменнике с перемешиванием одной из сред, движующейся в межтрубном пространстве ( показано штриховой линией.

Термическое сопротивление стенки — частное 5 / А.

Термическое сопротивление стенки можно уменьшить путем уменьшения толщины стенки и увеличения коэффициента теплопроводности материала; теплоотдача соприкосновением может быть интенсифицирована путем перемешивания жидкости и увеличения скорости движения; при тепловом излучении — путем повышения степени черноты и температуры излучающей поверхности.

Распределение температуры и плотности тепловых потоков вблизи стенки.| Средняя длина свободного пробега Л температура Сатерленда Tv, коэффициент теплопроводности Kg и коэффициент аккомодации у для различных газов при комнатной температуре.| Зависимость коэффициента теплоотдачи на стенке o w — — сс — — а для воздуха от давления для частиц разных диаметров.

Термическое сопротивление стенки прямо пропорционально перепаду температуры. Таким образом, в случае нестационарного переноса теплоты от стенки к плотноупакованному слою коэффициент теплопередачи ограничивается сопротивлением стенки, когда время стремится к нулю.

Термическое сопротивление стенки испарителя ( как и конденсатора) значительно увеличивается в результате всевозможных отложений на поверхности. Кроме того, наружная поверхность аппарата в целях защиты от коррозии имеет покрытие ( краской, суриком, антикоррозийным лаком и пр.

Термическое сопротивление стенки испарителя ( как и конденсатора) значительно увеличивается в результате всевозможных отложений на поверхности. Кроме того, наружная поверхность аппарата в целях защиты от коррозии имеет покрытие ( краской, суриком, антикоррозийным лаком и пр.

Термическое сопротивление стенок трубок ввиду его малости в формуле ( 147) не учитываем.

Важные моменты для применения утеплительных материалов

При проектировании жилища необходимо учитывать погодные условия местности. Если данные не учтены, термическое сопротивление теплопередаче может быть недостаточным, что позволит холоду проникать сквозь стены. Обычно, если такое происходит, используются утеплители. Иногда утепление производится внутри дома, но обычно оно проводится по наружным стенам. Утепляются несущие элементы и части, расположенные в непосредственном контакте с улицей.
Утепление жилища

Показатели современных теплоизоляционных материалов очень высокие, потому их не нужно использовать в большом количестве. Обычно для утепления хватает толщины до 10 мм. Не стоит забывать о паропроницаемости стен, дверей и утеплительных компонентов. Правила строительства требуют, чтобы этот показатель повышался из внутренних частей к внешним. Потому утеплять газобетонные или пенобетонные стены можно только минеральной ватой, показатели которой верны для приведенных требований.
Внутреннее утепление

Кроме потерь тепла через стены дома оно может уходить через кровлю

Поэтому важно утеплять не только наружные элементы, но и уложить материал над потолком, чтобы жилье было надежно утеплено. Если нет возможности применять необходимый материал, можно сконструировать зазор для вентиляции

В любом случае не стоит забывать, что теплосопротивление для материалов является одной из важнейших величин. Обязательно учитывайте его при возведении нового дома.

Термическое сопротивление

Любая стена, дверь, окно служит для ограждения от внешних природных воздействий. Они способны в разной степени защитить жилище от холодов, так как коэффициент проводимости у них отличается. Для каждого ограждения коэффициент рассчитываться должен по-разному. Точно так же ведется расчет для внутренних перегородок, стен, дверей, неотапливаемых частей дома.

Если в здании имеются части, которые не протапливаются, необходимо утеплять стены между ними и другими помещениями так же качественно, как и внешние. Воздух – плохой переносчик тепла, потому что там частицы находятся на значительном отдалении друг от друга. Выходит, что если изолировать некоторые воздушные массы герметично, получится неплохая изоляция от холода. Для уточнения данных производится расчет приведенного сопротивления. Данные показывают, насколько хорошо утеплено жилище, нет ли необходимости в дополнительном утеплении.
Современные материалы

В старых домах делали всегда по две рамы, чтобы между ними находилось некоторое количество воздушных масс. Теперь по такому же принципу делаются стеклопакеты, но воздух между стеклами откачивается полностью, чтобы частиц, проводящих тепло, вообще не было. Термическое сопротивление в них значительно превышает показатели старых окон. Входные двери делаются по такому же принципу. Стараются сделать небольшой коридор, предбанник, который сохранит тепло в доме.

Если в жилище установить дополнительные резиновые уплотнители в несколько слоев, это позволит повысить теплоизоляционные свойства. Современные входные двери создаются многослойными, там помещается несколько разных слоев утеплительного материала. Конструкция становится практически герметичной, дополнительное утепление часто не требуется. Сопротивление теплопередаче стен обычно не такое хорошее, потому используются дополнительные материалы для утепления.

Теплопередача алюминиевой рамы

Терморазрыв алюминиевой рамы

На рисунке 5 показаны основные конструкционные характеристики алюминиевой рамы с терморазвязкой в виде полиамидных вставок.

Рисунок 5 – Алюминиевая рама с полиамидными вставками:
0,2 < λ ≤ 0,3 Вт/(м2 К)
b1 + b2 + b3 + b4 ≤ 0,2 bf

Коэффициент теплопередачи оконной рамы из алюминиевых профилей с терморазрывом зависит от:

  • коэффициента теплопроводности материала терморазрыва;
  • длины терморазрыва, d, то есть минимального расстояния между наружным и внутренним алюминиевыми профилями;
  • ширины терморазрыва, b1+b2+b3+b4;
  • отношения общей ширины терморазрыва (b1+b2+b3+b4) к ширине рамы bf.

Длина терморазрыва

Производители алюминиевых окон обычно декларируют длину (или ширину) полиамидных вставок, которые образуют терморазрыв в алюминиевых профилях рамы. Однако эти полиамидные вставки имеют заделку в алюминиевых профилях не менее 2,5 мм с каждой стороны. Поэтому, если применяются полиамидные вставки, например, длиной 34 мм, то они обеспечивают эффективный терморазрыв в лучшем случае длиной всего 29 мм.

Формула

Формула для вычисления коэффициента теплопередачи рамы алюминиевого окна выглядит следующим образом:

где
Af,i /Af,di – отношение площади проекции внутренней поверхности рамы на плоскость окна к полной внутренней поверхности рамы (рисунок 6);
Af,e /Af,de – отношение площади проекции наружной поверхности рамы на плоскость окна к полной наружной поверхности рамы (рисунок 6);
Rsi – сопротивление теплопередаче внутренней поверхности рамы (прослойки воздуха на внутренней поверхности рамы), (м2 ·К)/Вт;
Rse – сопротивление теплопередаче наружной поверхности рамы (прослойки воздуха на наружной поверхности рамы), (м2·К)/Вт;
Rf – сопротивление теплопередаче сечения рамы, (м2·К)/Вт.

Рисунок 6 – Параметры формы алюминиевой рамы,
которые влияют на величину ее коэффициета теплопередачи

Сопротивление теплопередаче алюминиевой рамы

Сопротивление рамы алюминиевого окна без терморазрыва принимается равным нулю: Rf = 0.

Минимальное сопротивление алюминиевой рамы в зависимости от длины терморазрыва d принимается по сплошной линии графика на рисунке 7.

Рисунок 7 – Величины Rf для алюминиевой рамы с терморазрывом

Заштрихованная область на рисунке 7 выше сплошной линии соответствует величинам сопротивления теплопередаче рамы, полученным для различных алюминиевых окон при различных условиях в различных европейских странах. Поэтому верхнюю линию надо понимать как практический максимум сопротивления теплопередаче алюминиевых рам для заданных величин терморазрыва d.

Коэффициент теплопередачи алюминиевого окна

На основании известного коэффициента теплопередачи алюминиевой рамы и известного коэффициента теплопередачи стеклопакета (таблица 1) по соответствующим таблицам производится определение минимального коэффициента теплопередачи всего окна.

Таблица 1 – Коэффициенты теплопередачи стеклопакетов (фрагмент)

Стандарт ISO 10077-1 дает четыре таблицы для определения коэффициента теплопередачи окан в зависимости от отношения площади рамы к общей площади окна – 20 и 30 %, а также для различных типов спейсеров стеклопакетов – обычных и с улучшенными тепловыми характеристиками.

Таблица 2 – Коэффициенты теплопередачи окон с отношением площади рамы 20 % от общей площади окна (стеклопакеты с обычными спейсерами) – алюминиевые рамы

Таблица 3 – Коэффициенты теплопередачи окон с отношением площади рамы 30 % от общей площади окна (стеклопакеты с обычными спейсерами) – рамы пластиковые и деревянные

  1. Рамы деревянных окон имеют самый низкий (самый лучший) коэффициент теплопередачи. При толщине рамы деревянной рамы 50 мм коэффициент теплопередачи рамы составляет около 2,0 Вт/м2·К. При увеличении толщины деревянной рамы до 100 мм коэффициент теплопередачи рамы снижается до 1,5 Вт/м2·К, а до 150 мм – до 1,0 Вт/м2·К.
  2. Лучшие алюминиевые окна способны обеспечивать коэффициент теплопередачи до 1,9 Вт/м2·К. “Худшие” трехкамерные металлопластиковые окна имеют раму с коэффициентом теплопередачи около 2,2 Вт/м2·К. То есть, худшие пластиковые окна могут быть хуже лучших алюминиевых окон.
  3. Более высокая прочность алюминиевых сплавов по сравнению с пластиками и древесиной позволяет снижать ширину рамы окна. Доля площади рамы типичного алюминиевого окна составляет около 20 %, тогда как у пластиковых и деревянных окон – около 30 %.
    Поскольку коэффициент теплопередачи хорошего  стеклопакета всегда ниже, чем коэффициент теплопередачи любой рамы, то это дает алюминиевым окнам возможность конкурировать с окнами других типов, в первую очередь, с пластиковыми, по тепловой эффективности. Остается, правда, вопрос возможного выпадения конденсата на алюминиевой раме.

Алюминиевые профили для окон и дверей

Европейский стандарт EN 14024 устанавливает два типа терморазрыва для металлических профилей, в том числе, для алюминиевых профилей (рисунок 1).

Рисунок 1 – Два типа терморазрыва в алюминиевых профилях

Первая технология изготовления алюминиевого профиля с терморазрывом заключается в том, что две противоположных кромки полиамидного профиля вставляют в специальные пазы алюминиевых профилей, наружного и внутреннего. Затем производится закатка кромок этих пазов, что обеспечивает прочное соединение термомоста с каждым из алюминиевых профилей, а алюминиевых профилей друг с другом.

Вторая технология изготовления алюминиевых профилей с терморазрывом включает заливку жидкого полиуретана в алюминиевый профиль, который имеет специальные пазы. Затем, после затвердевания полиуретана, тонкие «перепонки» между наружной и внутренней частью алюминиевого профиля удаляют – вырывают или фрезеруют – и получается алюминиевый профиль с терморазрывом.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации