Андрей Смирнов
Время чтения: ~19 мин.
Просмотров: 0

Информация

Теплопроводность

Под количеством теплоты понимают сумму кинетической энергии молекул. Они при столкновении способны передавать часть своего тепла холодным частицам. Теплопроводность максимально проявляется в твердых телах, менее характерна для жидкостей, абсолютно не свойственна для газообразных веществ.

Единицей коэффициента теплопроводности является ватт на метр кельвина. Чем ниже значение коэффициента теплопроводности данного материала, тем хуже он проводит тепло и, как результат, является лучшим теплоизолятором. Значения коэффициента теплопроводности для конкретных материалов получены в ходе исследований, в которых фактический тепловой поток измеряется через образец конкретного материала.

Самый низкий коэффициент теплопроводности характеризуется пористыми материалами, особенно теми, чьи поры имеют наименьший диаметр

Это важно, потому что, чем больше места в ячейках, заполненных газом, тем больше будет явление конвекции, которое будет влиять на теплопроводность данного материала

В качестве примера, подтверждающего способность твердых тел передавать тепло от одного участка к другому, рассмотрим следующий эксперимент.

Если на стальной проволоке закрепить металлические кнопки, затем поднести конец проволоки к горящей спиртовке, постепенно кнопки от нее начнут отпадать. При нагревании молекулы начинают двигаться с большей скоростью, чаще сталкиваются между собой. Именно эти частицы отдают свою энергию и тепло более холодным областям. Если в жидкостях и газах не обеспечивается достаточно быстрого оттока тепла, это приводит к резкому увеличению градиента температуры в горячей области.

Накопление тепла в горячей породе, бетоне, гальке и т.д.

Вода обладает одной из самых высоких теплоемкостей – 4,2 Дж/см3*К, тогда как бетон обладает лишь одной третью от этого значения. С другой стороны, бетон может нагреваться до гораздо более высоких температур – 1200C за счет, например, электронагрева и, таким образом, обладает гораздо большей общей емкостью. Следуя из примера далее, изолированный куб примерно 2,8 м в поперечнике может оказаться способным обеспечивать достаточный объем хранимого тепла для одного дома, чтобы удовлетворить 50 % потребности в отоплении. В принципе, это может быть использовано для хранения избыточной ветряной или фотоэлектрической тепловой энергии благодаря способности электронагрева к достижению высоких температур

На уровне округов международное внимание привлек проект «Виггенхаузен-Зюд» в немецком городе Фридрисхафене. Это – железобетонный теплоаккумулятор объемом в 12 000 м3 (420 000 куб.фт.), соединенный с комплексом солнечных коллекторов площадью 4 300 м2 (46 000 квадр

фт), наполовину обеспечивающих потребность в горячей воде и отоплении у 570 домов. Компания «Siemens» строит под Гамбургом хранилище тепла емкостью 36 МВТ*ч, состоящее из базальта, разогретого до 600C, и выработкой энергии в 1,5 МВт. Схожая система планируется для постройки в датском городе Сорё, где 41-58 % накопленного тепла емкостью в 18 МВт*ч будет передаваться для центрального теплоснабжения города, а 30-41 % — как электричество.

Книги по жилищно-коммунальному хозяйству

Сегодня в продаже:

  • Многоквартирный дом. Юридический справочникИздательство: Дело и сервис. Год: 2016. Серия: Популярная юридическая библиотека.

    Предлагаемое читателю пособие предназначено для оказания методической помощи в организации юридического сопровождения функционирования многоквартирного дома, а также защиты своих прав жильцами таких домов. В предлагаемой брошюре автор дает рекомендации, которые позволят любому гражданину разобраться в правовом положении собственников и нанимателей жилых помещений в многоквартирных домах, а также членов их семей, их правах, обязанностях и возможностях…

  • Правила предоставления коммунальных услуг собственникам и пользователям помещенийИздательство: Проспект. Год: 2020. Серия: Законы и Кодексы.

    Правила предоставления коммунальных услуг собственникам и пользователям помещений в многоквартирных домах и жилых домов. Постановление Правительства РФ «О предоставлении коммунальных услуг собственникам и пользователям помещений в многоквартирных…

смотреть все книги

Аккумулирование солнечной энергии

Самые активно применяемые системы солнечного отопления могут хранить энергию сроком от нескольких часов до нескольких дней. Однако, наблюдается рост числа мощностей, использующих сезонное аккумулирование тепловой энергии (САТЭ), что позволяет хранить солнечную энергию летом, чтобы использовать ее для отопления помещений в зимний период. Солнечное сообщество Дрэйк Лэнлинг из провинции Альберта в Канаде сейчас научилось использовать 97 % солнечной энергии круглый год, что является рекордом, ставшим возможным только благодаря использованию САТЭ.

Использование как скрытой, так и явной теплоты также возможно в высокотемпературных системах приема солнечной тепловой энергии. Различные эвтектические смеси металлов типа Алюминия и Кремния (AlSi12) предлагают высокую точку плавления для эффективного производства пара, в то время как глиноземные смеси на основе цемента предлагают хорошие свойства хранения тепла.

Особенности предоставления услуги горячего водоснабжения

Предоставление горячего водоснабжения подразумевает под собой некоторые особенности:

  • В ситуации, когда в многоквартирном доме отсутствует система центрального горячего водоснабжения, то данную функцию выполняет непосредственно исполнитель, путём установки необходимого нагревательного оборудования.
  • При наличии в доме автономных систем отопления, которые так же применимы и для горячего водоснабжения, расчёт окончательного коммунального платежа будет производиться несколько иначе. В расчёт в таком случае включаются ресурсы, которые потребовались на нагрев воды до нужно температуры, в частности это газ или электричество.
  • Отличительной особенностью домов с автономными системами ГВС является то, что помимо оплаты коммунальных услуг, жильцам нужно быть готовым к периодическому плановому обслуживанию оборудования, что так же влечёт за собой определённые траты.

Что входит в горячее водоснабжение?

Фактически услуги по ГВС включают в себя нагрев до нужной температуры и подачу воды потребителю.

Общая стоимость таких услуг для жильцов будет складываться из следующих составляющих:

  • Непосредственно горячая вода, которая была поставлена потребителю. В случае с централизованным отоплением речь идёт об установленном тарифе, ну а то, из чего складывается стоимость, при автономных системах ГВС было рассмотрено выше.
  • В финальные коммунальные платежи так же попадает горячая вода, которая используется жильцами на общедомовые нужды.

Расчет общей суммы в 2018 году

Нагревание является самой дорогой коммунальной услугой. Это связано с тем, что для нагрева используются специальные нагревающие приборы, которые затрачивают много энергии.

Чтобы подсчитать размер оплаты за разогрев для ГВС необходимо определить, сколько ресурса было затрачено, для этого надо снять показания со счетчика или произвести расчет за горячую влагу, если его нет. Расчет размера вознаграждения за обогрев ГВС производится по следующей формуле:

P гв = Vгв × Tхв + (V v кр × Vi гв / ∑ Vi гв × Tv кр)

где:

V гв – объем горячей воды, потребленной за расчетный период (месяц) в квартире или нежилом помещении

T хв – тариф на холодную воду

V v кр – объем тепловой энергии, использованной за расчетный период на подогрев холодной воды при самостоятельном производстве горячей воды управляющей компанией

∑ Vi гв – суммарный объем горячей воды, потребленной за расчетный период во всех

T v кр – тариф на тепловую энергию в помещениях дома.

Ставка, установленная в регионе, умножается на норматив тепла, необходимые для нагрева кубометра жидкости. Получившаяся цифра, умножается на количество израсходованного ресурса.

Жильцам, у которых нет счетчика, расчет нужно произвести так: норматив делится на количество жильцов в доме (квартире).
Получившийся результат будет не точным, так как управляющей компанией добавляются еще и расходы, затраченные на ремонт, содержание и обеспечение работоспособности специальных приборов.

Коммунальные платежи за нагревание сильно ударяет по бюджету собственников жилья. В связи, с чем людям не хочется вносить деньги непонятно за что. И появление в бумаге новой графы за нагрев, всегда вызывает появление вопросов, особенно если за нововведение нужно платить немаленькую сумму. Подогрев не так давно появился в квитанции, из-за чего многие люди до сих пор не разобрались, почему за него надо платить отдельно, ведь они уже оплачивают водоснабжение.

Как проводить расчеты потребляемой тепловой энергии?

Если тепловой счетчик по тем или иным причинам отсутствует, то для расчета тепловой энергии необходимо использовать следующую формулу:

Vх(Т1-Т2)/1000=Q

Рассмотрим, что значат эти условные обозначения.

1. V обозначает количество потребляемой горячей воды, которое может исчисляться либо кубическими метрами, либо же тоннами.

2. Т1 – это температурный показатель самой горячей воды (традиционно измеряется в привычных градусах по Цельсию). В данном случае предпочтительнее использовать именно ту температуру, которая наблюдается при определенном рабочем давлении. К слову, у показателя даже имеется специальное название – это энтальпия. А вот если нужный датчик отсутствует, то в качестве основы можно взять тот температурный режим, который предельно близок к этой энтальпии. В большинстве случаев усредненный показатель составляет примерно 60-65 градусов.

3. Т2 в приведенной выше формуле также обозначает температуру, но уже холодной воды. По причине того, что проникнуть в магистраль с холодной водой – дело достаточно трудное, в качестве этого значения применяются постоянные величины, способные изменяться в зависимости от климатических условий на улице. Так, зимой, когда сезон отопления в самом разгаре, данный показатель составляет 5 градусов, а в летнее время, при отключенном отоплении, 15 градусов.

4. Что же касается 1000, то это стандартный коэффициент, используемый в формуле для того, чтобы получить результат уже в гигакалориях. Получится точнее, чем если бы использовались калори.

5. Наконец, Q – это общее количество тепловой энергии.

Как видим, ничего сложного здесь нет, поэтому движемся дальше. Если отопительный контур закрытого типа (а это более удобно с эксплуатационной точки зрения), то расчеты необходимо производить несколько по-другому. Формула, которую следует использовать для здания с закрытой отопительной системой, должна выглядеть уже следующим образом:

((V1х(Т1-Т)-(V2х(Т2-Т))=Q

Теперь, соответственно, к расшифровке.

1. V1 обозначает расход рабочей жидкости в трубопроводе подачи (в качестве источника тепловой энергии, что характерно, может выступать не только вода, но и пар).

2. V2 – это расход рабочей жидкости в трубопроводе «обратки».

3. Т – это показатель температуры холодной жидкости.

4. Т1 – температура воды в подающем трубопроводе.

5. Т2 – температурный показатель, который наблюдается на выходе.

6. И, наконец, Q – это все то же количество тепловой энергии.

Также стоит отметить, что расчет Гкал на отопление в данном случае от нескольких обозначений:

  • тепловая энергия, которая поступила в систему (измеряется калориями);
  • температурный показатель во время отвода рабочей жидкости по трубопроводу «обратки».

Общие сведения

Если температура двух тел отличается, тепло передается от теплого к более холодному телу. Если внутри тела или вещества разные температуры, то происходит тот же процесс. Такой обмен теплом описан во втором законе термодинамики и называется теплопередачей. Коэффициент теплоотдачи представляет интенсивность процесса теплопередачи для определенного материала. Этот коэффициент влияет на общую теплопередачу тела или вещества. В системе СИ коэффициент теплоотдачи измеряют в ваттах на квадратный метр кельвин, или Вт/(м²•К). Иногда он измеряется в равноценных единицах, ваттах на квадратный метр градус Цельсия, или Вт/(м²•°C).

Изменение агрегатного состояния вещества: под воздействием тепла лед тает и превращается из твердого состояния в жидкое.

Обычно такая теплопередача происходит при изменении агрегатного состояния вещества, например при переходе жидкости в газ. Изменение агрегатного состояния вещества называется фазовым переходом. Для того, чтобы этот процесс произошел, необходимо тепло. Так, например, если окружающая температура достаточно высока, то лед тает и превращается в воду, а вода испаряется и становится газом. В этом случае тепло из окружающей среды, например, тепловое излучение огня, передается льду или воде. Тепловая энергия передается молекулам вещества и заставляет их колебаться или двигаться быстрее. Если эта энергия достаточно велика и они движутся достаточно быстро, агрегатное состояние вещества изменяется. Коэффициент теплоотдачи часто вычисляют именно в этом контексте теплопередачи.

Эксперимент, демонстрирующий конвекцию. Маленький флакон с окрашенной горячей водой опустили в стакан с холодной водой. Молекулы горячей воды поднимаются вверх и окрашивают воду, наглядно иллюстрируя конвекционное движение горячей воды.

Теплопередача также происходит во время конвекции внутри жидкости или газа. Конвекция — это движение массы теплых молекул вещества в более холодную часть этого вещества. Некоторые примеры конвекции — движение горячей воды в кастрюле вверх от дна, под которым находится нагревательный элемент. Горячая вода вытесняет холодную, и холодная опускается вниз, где нагревается от дна кастрюли, и снова поднимается вверх. Таким образом постепенно нагревается вся вода в кастрюле. В невесомости вода таким образом не перемешивается, поэтому для полного нагрева ее приходится перемешивать автоматически или вручную.

Надувание воздушного шара. Воздух в оболочке воздушного шара быстро остывает, поэтому газовые горелки под оболочкой регулярно нагревают воздух в шаре. Фотография размещена с разрешения автора.

Нагревание воздуха в комнате от радиатора отопления происходит похожим образом. Горячий воздух движется вверх от радиатора, вытесняя холодный воздух вниз. Этот холодный воздух нагревается от радиатора, и снова поднимается вверх.

Благодаря этому движению горячего воздуха вверх, у пожарных и спасателей обычно есть возможность проникнуть во время пожара в горящее здание и спасти людей внутри. Они могут продвигаться в комнате по полу, где воздух не настолько горячий, по сравнению с воздухом у потолка. Если бы горячий воздух опускался вниз, то пожарным было бы намного труднее работать.

Для того чтобы поднять вверх воздушный шар, его оболочка должна быть наполнена горячим воздухом. Так как оболочка сделана из нейлоновой ткани, которая хорошо проводит тепло, то воздух в шаре быстро остывает. Эту проблему можно было бы решить с помощью хорошей теплоизоляции оболочки, но это увеличит объем шара в сложенном виде, и его будет труднее перевозить. Например, для перевозки понадобится уже не легковой, а грузовой автомобиль. В связи с этим цены на полеты увеличатся, и вполне вероятно, что многие люди не смогут себе этого позволить и в результате полеты станут невыгодными для их организаторов. Поэтому теплоизоляцию оболочки шара не выполняют.

Просто о сложном – Тепловая энергия

  • Галерея изображений, картинки, фотографии.
  • Определение количества тепловой энергии, потери энергии – основы, возможности, перспективы, развитие.
  • Интересные факты, полезная информация.
  • Зеленые новости – Определение количества тепловой энергии, потери энергии.
  • Ссылки на материалы и источники – Тепловая энергия.

Здесь я не буду давать словарное определение тепловой энергии

. Попытаюсь все объяснить на пальцах. Статья не для специалистов.

Подумайте, чем отличается горячая вода от холодной, что влияет на температуру воды?

Она отличается разным количеством содержащейся в ней теплоты. Эту теплоту, или по другому тепловую энергию, нельзя увидеть или потрогать, можно только почувствовать. Любая вода с температурой больше 0°С содержит какое-то количество теплоты. Чем выше температура воды (пара или конденсата) тем больше в ней содержится теплоты.

Измеряется теплота в Калориях, в Джоулях, в Мвт/ч (Мегаватт в час), не в градусах °С.

Так как тарифы утверждаются в гривнах за Гигакалорию, то за единицу измерения будем брать Гкал.

Таким образом, горячая вода состоит из самой воды и содержащейся в ней теплоэнергии или теплоты (Гкал). Вода как бы насыщена гигакалориями. Чем больше Гкал в воде, тем она горячее. Иногда горячую воду называют теплоносителем, т.е. тепло несёт.

В системах отопления теплоноситель (горячая вода) приходит в систему отопления с одной температурой, а выходит с другой. То есть пришел с одним количеством теплоты, а вышел с другим. Какую-то часть теплоты теплоноситель отдает в окружающую среду через радиаторы отопления. За эту часть, которая не вернулась в систему, и которая измеряется в Гкал, кому-то надо заплатить

При горячем водоснабжении (или порыве в системе отопления) мы потребляем всю воду и, соответственно, все 100% Гкал в ней, ничего обратно в систему не возвращаем.

Таким образом при установке узлов учета в многоквартирном доме или частном доме мы будем платить непосредственно за потребленное тепло (Гкал) нашим помещением. В случае, если прибора учета нет — нам будут насчитывать сумму, за потребленное нами тепло «по тарифу
«. Причем это «по тарифу» может в разы превышать фактически потребленное нами количество тепла. Именно поэтому сегодня как никогда встает вопрос установки узлов учета тепловой энергии.

Система от «Isentropic»

Система, которая была разработана ныне обанкротившейся британской фирмой «Isentropic», работала так, как указано ниже. Она включала в себя два изолированных контейнера, заполненных измельченной породой или гравием; нагретый сосуд, хранящий тепловую энергию при высокой температуре и давлении, и холодный сосуд, хранящий тепловую энергию при низкой температуре и давлении. Сосуды соединены трубами вверху и внизу, а вся система заполнена инертным газом аргоном.

Во время цикла зарядки система использует внепиковое электричество для работы в качестве теплового насоса. Аргон из верхней части холодного сосуда при температуре и давлении, сравнимыми с атмосферными, адиабатически сжимается до давления в 12 бар, нагреваясь до примерно 500C (900F). Сжатый газ перегоняется в верхнюю часть нагретого сосуда, где он просачивается сквозь гравий, передавая свое тепло породе и охлаждаясь до температуры окружающей среды. Охлажденный, но все еще находящийся под давлением, газ оседает на дне сосуда, где снова расширяется (опять же адиабатически) до 1 бара и температуры в -150C. Затем холодный газ проходит через холодный сосуд, где охлаждает породу, нагреваясь до своего изначального состояния.

Энергия снова превращается в электричество при обратном проведении цикла. Горячий газ из нагретого сосуда расширяется, чтобы запустить генератор, и затем отправляется в холодное хранилище. Охлажденный газ, поднявшийся со дна холодного сосуда, сжимается, нагревая газ до температуры окружающей среды. Затем газ направляется ко дну нагретого сосуда, чтобы снова подвергнуться нагреванию.

Процессы сжатия и расширения обеспечиваются специально разработанным поршневым компрессором, использующим скользящие клапаны. Дополнительное тепло, вырабатываемое в ходе недостатков процесса, уходит в окружающую среду через теплообменники во время цикла разрядки.

Разработчик заявляет, что КПД цикла в 72-80 % вполне реален. Это позволяет сравнивать его с накоплением энергии от ГАЭС, КПД которого составляет свыше 80 %.

Другая предлагаемая система использует турбины и способна работать с гораздо большими объемами энергии. Использование солевых грелок в качестве накопителя энергии позволит продвинуть исследования вперед.

Что представляет из себя учет тепловой энергии.

Узел учета тепловой энергии — это комплекс приборов, поэтому и называется узел.

Технически это выглядит следующим образом. В трубопроводы тепловых сетей (в подачу, в обратку, в сеть ГВС) врезаются:

  • расходомеры — измеряют количество пройденного теплоносителя;
  • температурные датчики — измеряют температуру теплоносителя;
  • и (не всегда) датчики давления — измеряют давление в трубопроводах.

К приборам нужно подать какое-то напряжение, автономное или сетевое, в зависимости от типа прибора.

Данные приборы необходимо врезать максимально приближенно к границе балансовой принадлежности (БП) и эксплуатационной ответственности (ЭО), т.е. к тому месту, откуда начинаются ваши сети. К договору теплоснабжения должен быть соответствующий акт или приложение.

Если приборы врезаются не на границе БП и ЭО, то теплоснабжающая компания рассчитывает теплопотери на участке тепловых сетей от границы БП до места установки регистрирующих приборов по каждому трубопроводу с учетом метода прокладки (подземная/наземная), диаметра сети и наличия тепловой изоляции трубопроводов.

Оплата за теплопотери начисляется дополнительно к показаниям узла учета теплоты балансовым методом. В счете на оплату обычно выделяют отдельной строкой. В некоторых теплоснабжающих компаниях теплопотери не учитываются, начисляют по показаниям теплосчетчика.

От измерительных приборов по проводам идут сигналы на теплорегистратор, или тепловычислитель, или теплосчетчик, кому как больше нравится. Теплорегистратор записывает данные себе в память и хранит в своем архиве определенный заводом-изготовителем срок.

Например, часовые показания могут храниться за последние 15 дней, суточные — за последние 45 дней, месячные — за последние 12 месяцев.

На основании этих данных теплорегистратор математически вычисляет Гкал, за которые мы и платим.

Однако не сама установка узла учета тепловой энергии ведет к экономии!

Если установить узел учета тепла и при этом считать, что теперь настало счастье — это полное заблуждение! Для экономии необходимо, что бы теплопоставляющая компания начала меньше начислять, собственно говоря «по счетчику». Для этого необходимо снимать данные со счетчика и передавать их в теплосеть

! Именно это приведет к экономии!

Использование общедомового теплосчетчика

Эту методику применяют в высотных домах при расчете платежей за услуги центрального отопления в квартире. Посчитать стоимость теплоснабжения за холодный период можно по формуле
P = V x S / S общ x T, где:

Определение размера абонплаты на примере двухкомнатной квартиры: общая площадь квартиры — 56 м²; квадратура всех комнат и квартир дома — 7000 м²; месячный объем потребленной теплоэнергии — 123 Гкал; цена за единицу тепловой энергии — 1850 рублей. Подставив все необходимые значения в формулу, определяют сумму месячной абонплаты: P = 123 x 56 / 7000 x 1850 = 1820,4 рубля.

По новым правилам платить за отопление в помещениях, оснащенных персональными тепловыми счетчиками, необходимо, опираясь на данные, зафиксированные общедомовыми приборами учета, и объемы коммунальных ресурсов, начисленных по нормативам. Для расчета расходования тепловой энергии можно воспользоваться онлайн-калькулятором.

Расчет батарей отопления. Правила и ошибки.

Основной проблемой этого метода является не трудность вычислений, а извлечение первичных сведений. Владельцам квартир, желающим проверить правильность суммы, которая насчитывается к оплате, необходимо будет выяснить прошлогодние сведения общедомового прибора учета либо заблаговременно их записывать. К тому же выполняется ежегодная корректировка в сопоставлении с новыми показаниями измерительного прибора.

Основные понятия о показателе

Гигакалория — это то, в чем измеряется тепловая энергия отопления
, и по условным расчетам она соответствует одному миллиарду калорий, по которым определяются энергетические затраты, необходимые для нагревания одного грамма воды на градус. То есть для того, чтобы нагреть целые 1000 тонн воды на один градус Цельсия, приходится затрачивать по 1 Гкал (именно эта аббревиатура с расшифровкой «гигакалория» используется во всех действующих еще с 1995 года законодательных актах и нормах).

Предназначение расчетной единицы

Вычисление гигакалорий применяется сразу в нескольких целях, существенно отличающихся друг от друга в зависимости от жилого помещения, которое можно условно классифицировать по двум типам: квартира в многоэтажном доме и частный коттедж с одним и более уровнями, включая цоколь и мансарду. Обычно речь идет о таких задачах:

Сегодня самым дорогим источником тепла в доме является электрическая энергия. Вторую и третью позицию в этом негласном рейтинге делят между собой дизельное топливо и природный газ. В то же время перечисленные ресурсы пользуются самым большим спросом и популярностью, поэтому установка счетчиков поможет не только посчитать гигакалории, но и сократить потребление, выбрав оптимальную его норму с помощью специальных регуляторов и другого вспомогательного оборудования.

расчет нагрузки на отопление

Установка счетных приборов

Коррекция объема потребляемой энергии, позволяющая выбирать оптимальную схему соотношения «комфорт-экономия», обеспечивается за счет монтажа специальных регуляторов, который выполняется по двум стандартным схемам. Речь идет о таких типах врезки в систему:

  • Установка термостата на общей магистрали обратного выхода, актуальная для последовательного кольцевого подключения радиаторов отопления. При таком типе монтажа регулировка потребления и расхода тепла будет напрямую зависеть от температуры в жилом помещении, возрастая по мере его остывания и снижаясь при нагревании.
  • Монтаж дросселей на подходе к каждому радиатору. Идеальная схема для старого жилфонда, для которого свойственны отдельные стояки в каждой комнате. Кроме того, дросселирование помогает регулировать температуру и, как следствие, расход теплоэнергии в каждом помещении, а не во всей квартире в целом, что позволит избежать образования зон с разным уровнем влажности и степенью нагрева.

Сегодня в квартирах многоэтажных домов и частных коттеджах устанавливают счетчики двух видов, каждый из которых имеет свои преимущества и недостатки. В этот перечень входят следующие приборы:

Эндотермические и экзотермические химические реакции

Технология на основе гидратов солей

Примером экспериментальной технологии накопления энергии на основе энергии химических реакций является технология на основе гидратов солей. Система использует энергию реакции, создаваемой в случае гидратации или дегидратации солей. Это работает благодаря хранению тепла в резервуаре, содержащем 50 %-ный раствор гидроксида натрия. Тепло (к примеру, получаемое с солнечного коллектора) хранится за счет испарения воды в ходе эндотермической реакции. Когда воду добавляют вновь, в ходе экзотермической реакции при 50C (120F) высвобождается тепло. На данный момент системы работают с КПД в 60 %. Система особенно эффективна для сезонного накопления тепловой энергии, так как высушенная соль может храниться при комнатной температуре длительное время без потерь энергии. Контейнеры с обезвоженной солью даже могут перевозиться в различные места. Система обладает большей плотностью энергии, чем тепло, накопленное в воде, а ее мощность позволяет хранить энергию в течение нескольких месяцев или даже лет.

В 2013 году голландский разработчик технологий «TNO» представил результаты проекта «MERITS» по хранению тепла в контейнере с солью. Тепло, которое может доставляться с солнечного коллектора на плоскую крышу, выпаривает воду, содержащуюся в соли. Когда воду добавляют снова, тепло высвобождается практически без потерь энергии. Контейнер с несколькими кубометрами соли может хранить достаточно термохимической энергии, чтобы обогревать дом всю зиму. При температурном режиме, как в Нидерландах, среднее теплоустойчивое хозяйство потребует за зиму примерно 6,7 ГДж энергии. Чтобы сохранить столько энергии в воде (при разнице температур в 70C), потребовалось бы 23 м3 воды в изолированном резервуаре, что превышает возможности хранения большинства домов. С использованием технологии на основе гидрата солей с плотностью энергии около 1 ГДж/м3, достаточно было бы 4-8 м3.

По состоянию на 2016 год, исследователи из нескольких стран проводят эксперименты по определению наилучшего типа соли или смеси солей. Низкое давление внутри контейнера кажется наилучшим для передачи энергии. Особенно перспективными являются органические соли, так называемые «ионные жидкости». По сравнению с сорбентами на основе галида лития они вызывают гораздо меньше проблем в условиях ограниченных природных ресурсов, а в сравнении с большинством галидов и гидроксидом натрия – менее едки и не дают негативного воздействия через выбросы углекислого газа.

Молекулярные химические связи

На данный момент исследуется возможность хранения энергии в молекулярных химических связях. Уже достигнута плотность энергии, эквивалентная ионно-литиевым батареям.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации