Андрей Смирнов
Время чтения: ~11 мин.
Просмотров: 0

Радиация: основные характеристики и самые популярные заблуждения

История

О существовании ионизирующего излучения стало известно в результате открытия в 1860-х годах катодных лучей (потоков электронов, ускоряемых в вакуумной трубке высоким напряжением). Следующим открытым видом ионизирующего излучения стали рентгеновские лучи (Вильгельм Рентген, 1895). В 1896 году Анри Беккерель обнаружил ещё один вид ионизирующего излучения — невидимые лучи, испускаемые ураном, проходящие сквозь плотное непрозрачное вещество и засвечивающие фотоэмульсию (в современной терминологии — гамма-излучение). В результате дальнейшего исследования явления радиоактивности было обнаружено (Эрнест Резерфорд, 1899), что в результате радиоактивного распада испускаются альфа-, бета- и гамма-лучи, отличающиеся по ряду свойств, в частности, по электрическому заряду. Впоследствии были обнаружены и другие виды ионизирующей радиации, возникающие при радиоактивном распаде ядер: позитроны, конверсионные и оже-электроны, нейтроны, протоны, осколки деления, кластеры (лёгкие ядра, испускаемые при кластерном распаде). В 1911—1912 годах были открыты космические лучи.

Знак радиационной опасности

Новый знак радиационной опасности

Международный условный («трилистник», «вентилятор») имеет форму трёх секторов шириной 60°, расставленных на 120° друг относительно друга, с небольшим кругом в центре. Выполняется чёрным цветом на жёлтом фоне.

В таблице символов Юникод есть символ знака радиационной опасности — (U+0x2622).

В 2007 году был принят новый знак радиационной опасности, в котором «трилистник» дополнен знаками «смертельно» («череп с костями») и «уходи!» (силуэт бегущего человека и указывающая стрелка). Новый знак призван стать более понятным для тех, кто не знаком со значением традиционного «трилистника».

Применение ионизирующих излучений

Ионизирующие излучения применяются в различных отраслях:

В технике

  • Интроскопия (в том числе для досмотра багажа и людей в аэропортах).
  • Стерилизация медицинских инструментов, расходных материалов и продуктов питания.
  • «Вечные» люминесцентные источники света широко использовались в середине XX века в циферблатах приборов, подсветке специального оборудования, ёлочных игрушках, рыболовецких поплавках и тому подобном.
  • Датчики пожара (задымления).
  • Радиоизотопные сигнализаторы обледенения
  • Агрегаты (высоковольтные блоки) системы запуска авиадвигателей
  • Датчики и счётчики предметов на принципе перекрытия предметом узкого гамма- или рентгеновского луча.
  • Некоторые виды изотопных генераторов электроэнергии. См. Бета-вольтаический элемент питания (англ.)русск..
  • Ионизация воздуха (например, для борьбы с пылью в прецизионной оптике или облегчения пробоя в автомобильных свечах зажигания).
  • Нейтронно-трансмутационное легирование полупроводников.

В медицине

См. также: Ядерная медицина, Радиотерапия и Радиохирургия

  • Для получения картины внутренних органов и скелета используются рентгенография, рентгеноскопия, компьютерная томография.
  • Для лечения опухолей и других патологических очагов используют лучевую терапию: облучение гамма-квантами, рентгеном, электронами, тяжёлыми ядерными частицами, такими как протоны, тяжёлые ионы, отрицательные π-мезоны и нейтроны разных энергий.
  • Введение в организм радиофармацевтических препаратов, как с лечебными, так и с диагностическими целями.

В аналитической химии

  • Радиоактивационный анализ путём бомбардировки нейтронами и анализа характера и спектра наведённой радиоактивности.
  • Анализ веществ с использованием спектров поглощения, испускания или рассеяния гамма- и рентгеновских лучей. См. рентгеноспектральный анализ, рентгенофлуоресцентный анализ.
  • Анализ веществ с использованием обратного рассеяния бета-частиц.

Основные единицы измерения ионизирующих излучений

Рентген (Р, R) – внесистемная единица экспозиционной дозы фотонного (гамма- и рентгеновского) излучений. Микрорентген – миллионная часть рентгена, мкР

Поглощённая доза (сокращённое обозначение – д о з а) – определяется двумя основными способами.

Для малых и средних уровней облучения – применяют единицы Зиверт. Дальше – считают в единицах Грэй. По цифрам, эти ед-цы примерно равны.
Зиверт (Зв, Sv) – в системе единиц СИ, поглощенная доза с учётом, в виде коэффициентов,
энергии и типов излучения (эквивалентная) и радиочувствительности живых органов и тканей в теле человека (эффективная). Данная ед-ца используется до величин дозы – порядка 1.5 зиверта, для более высоких значений облучения – используют Грэи.

1 миллизиверт (мЗв. mSv) = 0.001 зиверт

1 микрозиверт (мкЗв. µSv) = 0.001 милизиверт

Для оценки влияния ионизирующего облучения на человека – служит величина индивидуальной эффективной дозы (ИЭД, мЗв/чел.) Медицинская компонента, обусловленная использованием ИИИ (источников ион. излучения) в медицинских целях – составляет от 20 до 30%.

бэр – биологический эквивалент рентгена; это старая, внесистемная единица поглощённой дозы; современная – Зиверт.

1 бэр ~ 1 сЗв (сантизиверт).

1 Зв ~ 100 бэр
Мощность дозы – д о з а  излучения за единицу времени:

0.10 мкЗв/час == 10 мкР/час
(двойной знак равенства означает здесь «примерно»)

1 зиверт == 100 рентген

Коэффициент качества излучения для гамма-квантов и бета-частиц равен единице (Q=1), для быстрых нейтронов Q=10, для альфа-частиц Q=20 и т.д.

Активность (А) радиоактивного вещества – число спонтанных ядерных превращений в этом вещ-ве на определённой площади, в единичном кубическом объёме («объёмная активность») или в единице веса («удельная активность») за малый промежуток времени. Единицей измерения активности, в системе СИ, является:

1 беккерель (Бк, Bq) = 1 ядерное превращение в секунду

109 Бк = 1 гигабеккерель (ГБк, GBq)

До сих пор ещё используется (особенно часто – на экологических картах радиоактивного заражения, в расчёте на квадратный километр) старая внесистемная единица измерения активности рад.вещ. в сист. СГС – К ю р и:
1 кюри (Ки, Ci) = 3,7 х 1010 беккерель = 37 гигабеккерель (ГБк, GBq)

1 мкКи (микрокюри) = 3,7 х 104 распадов в секунду = 2,22 х 106 расп. в минуту.

Человеческий организм содержит примерно 0,1 мкКи калия-40 натурального происхождения.
Верхнее значение безопасной (то есть, на уровне естественной) «минимально значимой активности» (МЗА) – находится в пределах от 3.7 кБк (килобеккерель) до 37 МБк (мегабеккерель), в зависимости от вида излучения (до удельных 74 кБк/кг – для твёрдых бета-активных,
менее 3.7 кБк/кг – для гаммаактивных, меньше 7.4 кБк/кг – для альфаактивных веществ, до 0.37 кБк/кг – для трансурановых).

Грэй (Гр, Gy) – в системе СИ, величина энергии ионизирующего излучения, переданная веществу.

1 Гр (ед. СИ) = 100 рад (внесистемная единица) == 100 рентген (с точностью 15-20%, для энергий 0.1-5 МэВ)

5 мГр == 500 мР = 0.5 Р (безопасная доза общего кратковременного облучения – исключаются клинически выраженные соматические эффекты; при медицинском обследовании или лечении – это как снимок флюорографии, сделанный на старом аппарате, раз в год).

При экспозиционной дозе в 1 рентген, поглощённая доза в воздухе будет 0,85 рад

Чем проверить наличие радиации

Проверить уровень радиации может возникнуть при покупке новой квартиры, квартиры в неблагополучном районе или использовании подозрительных материалов на строительстве дома. У человека нет органов чувств способных почувствовать радиацию и оценить опасность. Поэтому для её обнаружения необходимо наличие специализированных приборов — дозиметров.

Бытовые дозиметры для измерения радиации

Они могут быть бытовыми, профессиональными, промышленными или военными. В качестве чувствительного элемента могут использоваться различные датчики: газоразрядные, сцинтилляционные кристаллы, слюдяные счётчики Гейгера-Мюллера, термолюминесцентные лампы, пин-диоды.

Для замеров в домашних условиях нам доступны бытовые дозиметры. В зависимости от прибора он может выводить показания на дисплей в мкЗв/ч или мкР/ч. Некоторые приборы более близкие к профессиональным могут показывать в обоих вариантах. Следует учитывать, что бытовые дозиметры имеют довольно высокий уровень погрешности измерений.

Измерение радиационного излучения

При слове «радиация» у многих людей в мозге возникает картины страшной аварии на Чернобыльской АЭС. Однако люди каждый день подвергаются воздействию тех или иных ионизирующих факторов. Для измерения этого ионизирующего излучения существует ряд приборов. Соответственно, существуют и единицы измерения, и допустимые нормы радиационного фона.

К основным источникам радиации относятся:

  • природные радиоактивные вещества, окружающие человека (70%);
  • медицинские аппараты: рентген, томограф и прочие (10%);
  • космическая солнечная радиация (именно от неё человечество защищает озоновый слой) (15%);
  • бытовые электроприборы (5%).

Проверку на величину радиационного фона и силу излучения проводят с помощью специальных приборов, которые позволят с точностью определить, насколько интенсивно излучение в исследуемом участке. Чаще всего замеры проводят в следующих местах и случаях:

  • при наличии рядом явного источника радиационного заражения (вблизи атомных электростанций);
  • во время путешествий и походов по неизвестной территории, где рядом может находиться радиоактивный источник;
  • перед строительством жилого дома или при приобретении квартиры.

Измерение уровня облучения радиацией

Человек испытывает на себе влияние излучения повсеместно. Радиоактивная доза в определенном количестве присутствует в организме всегда. Когда норма излучения в организме превышена во много раз, может наступить смерть.

Уровень радиации – это максимально допустимая дозировка фонового уровня ионизирующего излучения (измеряется в микрозивертах). Допустимый уровень радиации в закрытом помещении составляет 25 мкР/ч. Единица излучения радиации – микрозиверты в час. Вероятность развития рака резко повышается, если человек облучился дозой радиации свыше 11.42 МкЗв/час. Более половины людей, облучившихся дозой свыше 570.77 МкЗв за один раз, умирает за 3-4 недели. Предельно допустимый уровень излучения от источников естественного происхождения считается нормальным в пределах до 0,57 мкЗв/час. Нормальный радиационный фон, исключая влияние радона, составляет 0,07 мк/час.

Особую опасность излучение представляет для лиц, чья профессиональная деятельность предполагает постоянное столкновение с облучением. Мероприятия по предупреждению облучения среди медперсонала сводятся к установлению допустимого предела излучения.

Предельно допустимая концентрация (ПДК) радиоактивного излучения рассчитывается исходя из данных о виде и периоде распада ионизирующих частиц.

Если человек регулярно соприкасается с радиоактивными элементами, ему необходимо знать о том, как себя защитить. Разработаны и внедрены в практику допустимые уровни загрязнения одежды и средств защиты после дезинфекции. Максимально допустимый уровень загрязнения отражен в таблице ниже.

Объект загрязненияЧисло частиц в 1 минуту
Альфа-излучениеБета-излучение
До очисткиПосле очисткиДо очисткиПосле очистки
Руки75фон5000фон
Белье и полотенца75фон5000фон
Спецодежда из хлопчатобумажной ткани500100250005000
Одежда из пленки5002002500010000
Обувь50020025000

Существует средняя суточная норма для человека. Она равна 0,0027 млЗв / в сутки.

Что такое ионизирующая, поглощающая, проникающая радиация?

Радиация вокруг нас представляет достаточно сложный процесс

И есть еще несколько понятий, которые важно знать

Итак, первое — это ионизирующее излучение. Оно представляет собой поток частиц, которые могут привести к ионизации вещества. Во время этого процесса один или несколько электронов отрываются от атома или молекулы, а потом становятся положительно заряженными ионами. При этом, электроны могут присоединяться и к другим, образуя тем самым отрицательно заряженные ионы.


Проникающая радиация

Второе понятие — поглощенная радиация. Она представляет собой частичное превращение солнечной радиации в иные виды энергии. В атмосфере примерно 15% входящей энергии поглощается и большая часть приходится на земную поверхность. Так, поглощенная радиация представляет собой часть суммарной солнечной радиации, поглощаемой земной поверхностью.

Третье — проникающая радиация. Она является одним из поражающих факторов ядерного оружия. Это гамма-излучение и поток нейтронов. Более того, бывает ионизирующее излучение в виде альфа- и бета-частиц. Как правило, действует проникающая радиация примерно 10-15 секунд после взрыва. Кроме того, есть некоторые элементы, к примеру, плутоний, радий или уран, которые спонтанно превращаются. Они дают поток излучения. И это явление называется проникающей радиацией.

Материалы с повышенной радиоактивностью

При строительстве в советское время все материалы проходили проверку по ГОСТ. Поэтому разговоры о том что «хрущёвские» пятиэтажки имеют радиоактивность, не более чем миф. Основным источником радиации в квартире или любом другом помещении является газ радон.

Он относится к естественным источникам радиации, так как присутствует в земной коре и выделяется в окружающую среду, внося свою долю в общий радиационный фон. Проникая в помещение через фундамент и полы, он накапливается , увеличивая нормальный радиоактивный фон. Поэтому не стоит делать помещения слишком герметичными. Дополнительным источником поступления радона в дом является вода поступающая из артезианских скважин и газ.

Средняя радиоактивность некоторых строительных материалов

Основные строительные материалы: бетон, кирпич и дерево не представляют опасности и являются самыми безвредными. Однако в строительстве и в быте мы используем материалы, выделяющие довольно большое количество радона. К ним относятся:

  • пемза;
  • гранит;
  • туф;
  • графит.

Все материалы залегающие или добытые из земной коры могут иметь повышенный уровень радиации. Поэтому неплохо контролировать её самостоятельно.

Фон ионизирующего излучения

Фон ионизирующего излучения (или радиационный фон) — суммарное излучение от природных и техногенных источников.

В России радиационный мониторинг окружающей среды осуществляют федеральная служба Росгидромет и государственная корпорация Росатом. На международном уровне сбором информации и оценкой влияния радиоактивного излучения на человека и окружающую среду занимается Научный комитет по действию атомной радиации (НКДАР) при Организации объединённых наций.

Основными составляющими естественного (природного) радиационного фона являются космические лучи и излучение от радионуклидов земного происхождения, повсеместно содержащихся в земной коре.

Согласно данным НКДАР среднемировая мощность эффективной дозы от действия космических лучей (включая вторичное нейтронное излучение) на поверхности земли вне укрытий составляет 0,036 мкЗв/ч. С увеличением высоты над уровнем моря это значение существенно меняется и в зоне полётов гражданской авиации (9—12 км) может составлять 5—8 мкЗв/ч. Исходя из этого эффективная доза от действия космических лучей при трансатлантическом перелёте из Европы в Северную Америку достигает 30—45 мкЗв. Кроме того мощность дозы рассматриваемого излучения зависит от геомагнитной широты и состояния 11-летнего цикла солнечной активности. Вклад каждого из двух факторов в мощность дозы излучения составляет около 10 % .

Второй существенной составляющей естественного радиационного фона является γ-излучение от радионуклидов земного происхождения таких как 40K и продуктов распада урана-238 и тория-232 (226Th, 228Ac, 214Pb, 214Bi). Средняя мощность эффективной дозы от внешнего облучения этими радионуклидами в зависимости от региона находится в диапазоне от 0,030 до 0,068 мкЗв/ч. Как исключения, в мире имеются регионы с повышенным естественным радиационным фоном, обусловленным наличием монацитового песка с большим содержанием тория (города Гуарапари в Бразилии, Янцзян в Китае, штаты Керала и Мадрас в Индии, дельта Нила в Египте), вулканическими почвами (штат Минас-Жерайс в Бразилии, остров Ниуэ в Тихом океане) или наличием радия-226 в пресной воде (город Рамсар в Иране).

По данным Росгидромета на территории Российской Федерации мощность экспозиционной дозы γ-излучения (МЭД) находится в основном в пределах колебаний естественного радиационного фона (9—16 мкР/ч).

Превышение значений МЭД зафиксировано на загрязнённых после аварии на ЧАЭС территориях в Брянской, Калужской, Курской, Орловской и Тульской областях в диапазоне 19—25 мкР/ч. В 100-км зонах радиохимических предприятий и АЭС наблюдаются кратковременные повышения МЭД до 20 мкР/ч, однако среднегодовые значения находятся в пределах колебания фона — 9—14 мкР/ч.

Средняя годовая эффективная доза, получаемая человеком и обусловленная природными факторами, составляет 2400 мкЗв, в эту цифру кроме внешнего облучения от источников рассмотренных выше, входит внутренне облучение от радионуклидов попадающих в организм человека с воздухом, пищей и водой (суммарно 1500 мкЗв). В последнее время техногенное облучение в развитых странах приближается к вкладу от естественных источников. При этом доза от медицинских исследований и терапии с использованием источников ионизирующего излучения составляет 95 % всего антропогенного радиационного воздействия на человека.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации