Андрей Смирнов
Время чтения: ~16 мин.
Просмотров: 0

Расчет калорифера: как рассчитать мощность прибора для нагрева воздуха для отопления

Количество потребляемой мощности

Бойлер, подключение

Придя к решению о необходимости покупки и производя расчет объема бойлера косвенного нагрева, нужно подсчитать сколько теплой воды нужно для нормального существования. Представим семью из 4-х человек и осуществим среднесуточный анализ за неделю и пиковое (утро рабочего дня) исследование потребления горячей воды.

      1. Еженедельный анализ
  • Для того, чтобы помыть посуду потребуется около 5 литров теплой воды в минуту. Учитывается время полоскания, это около 5 минут. Два раза в день моем тарелки, получаем 50 л теплой воды ушло на кухонную утварь в сутки. Умножим на 7 дней итого 350 литров в неделю.
  • Каждый человек 2-3 раза в неделю принимает ванну, расходуя при этом порядка 170 литров. 4*2,5=10*170=1700 литров за 7 дней.
  • Еще 4-5 раз душ по 10 минут при расходе около 12 л/мин. 4,5*10*12=540 на одного члена семьи, соответственно на всех 2160 л в неделю.
  • Мелкая гигиена (помыть руки, обувь, убрать в доме) — порядка 10 л в день на человека составит 280 л за исследуемый период.

Итого — 350+1700+2160+280=4490 литров в неделю. Добавим заходивших гостей и запас на всякий случай получим ориентировочную цифру около 5000 литров в неделю. Но бойлер считает в часах, нужно перевести в его единицы. 5000 / 7 / 24 = 30 литров в час теплой воды составляет средний расход семьи из 4-х человек.

Исходя из наших цифр соотношения температуры и мощности получаем необходимый средний расход мощности — 30*0,0375 = 1,125 кВт/час.

Как рассчитать нихромовую спираль

При необходимости рассчитать спираль достаточно просто. В качестве примера приведен расчет спирали из нихромовой проволоки диаметром 0,45 мм (такого диаметра в таблице нет) мощностью 600 Вт на напряжение 220 В. Все расчеты выполняются по закону Ома.

Сначала следует рассчитать ток, потребляемый спиралью.

I = P/U = 600/220 = 2,72 A

Для этого достаточно заданную мощность поделить на напряжение и получить величину тока, проходящего через спираль. Мощность в ваттах, напряжение в вольтах, результат в амперах. Все согласно системе СИ.

По известному теперь току рассчитать требуемое сопротивление спирали достаточно просто: R = U/I = 220/2,72 = 81 Ом

где ρ – удельное сопротивление проводника (для нихрома 1.0÷1.2 Ом•мм2/м), L — длина проводника в метрах, S – сечение проводника в квадратных миллиметрах. Для проводника диаметром 0,45 мм сечение составит 0,159 мм2.

Отсюда L = S * R / ρ = 0.159 * 81 / 1.1 = 1170 мм, или 11,7 м.

В общем, получается не столь уж сложный расчет. Да собственно и изготовление спирали не так уж и сложно, что, несомненно, является достоинством обычных нихромовых спиралей. Но это достоинство перекрывается множеством недостатков, присущих открытым спиралям.

Прежде всего, это достаточно высокая температура нагрева – 700…800˚C. Нагретая спираль имеет слабое красное свечение, случайное прикосновение к ней может причинить ожог. Кроме того возможно поражение электрическим током. Раскаленная спираль выжигает кислород воздуха, привлекает к себе пылинки, которые выгорая, дают весьма неприятный аромат.

Но главным недостатком открытых спиралей следует считать их высокую пожароопасность. Поэтому пожарная охрана попросту запрещает применение обогревателей с открытой спиралью. К таким обогревателям, прежде всего, относится, так называемый «козел», конструкцию которого можно посмотреть на видео.

https://youtube.com/watch?v=ViCjGoCGnrs

Вот такой вот получился дикий «козел»: сделан он нарочито небрежно, просто, даже очень плохо. Пожара с таким обогревателем ждать придется недолго. Более совершенная конструкция подобного отопительного прибора показана на рисунке ниже.

 

   Обогреватель типа ПЭТ 1 кВт, 220 В

Нетрудно видеть, что спираль закрыта металлическим кожухом, именно это предотвращает прикосновение к разогретым токоведущим частям. Пожароопасность такого устройства намного меньше, чем показанного на предыдущем видео.

Когда-то давно в СССР выпускались обогреватели-рефлекторы. В центре никелированного отражателя имелся керамический патрон, в который наподобие лампочки с цоколем E27, вворачивался нагреватель мощностью 500Вт. Пожароопасность такого рефлектора тоже очень высока. Ну, вот как-то не задумывались в те времена, к чему может привести использование таких обогревателей.

   Обогреватель рефлекторного типа

Совершенно очевидно, что различные обогреватели с открытой спиралью можно, вопреки требованиям пожарной инспекции, использовать лишь под неусыпным присмотром: ушел из помещения – выключи обогреватель! Еще лучше просто отказаться от использования обогревателей подобного типа.

Температурный напор калорифера

7. Расчет температурного напора. Ниже представлены формулы для определения среднего арифметического или
среднего логарифмического температурного напора
(в зависимости от итогового показателя отношения дельт температур). Если этот шаг вызовет у вас затруднения, его можно пропустить и перейти к пункту 8.
Там представлена общая формула нахождения фактической тепловой мощности выбранного калорифера, которая позволит (в большинстве случаев) подобрать
теплообменник с допустимой степенью погрешности.

Принцип работы водяного калорифера построен на теплообмене двух сред. Первичный теплоноситель — горячая или перегретая вода, вторичный — воздух.
Поэтому этот теплообменник называют еще и водовоздушным. Нагрев воздуха происходит за счет отдачи тепла первичным теплоносителем (горячей водой) —
вторичному теплоносителю (холодному воздуху). То есть условно мы можем разделить теплообменные среды на два потока или контура. Первый контур —
греющая сторона — теплоноситель горячая вода, второй контур — нагреваемая сторона — теплоноситель воздух. Чем больше разница температур потоков,
тем эффективней происходит теплообмен. Средний температурный напор рассчитывается в следующей последовательности: Т1 — температура на входе (горячая сторона); Т2 — температура на выходе (горячая сторона);
Т3 — температура на выходе (холодная сторона); Т4 — температура на входе (холодная сторона). Δt Б — большее значение из дельт температур; Δt м — меньшее значение из дельт температур.


Натуральный логарифм ln — это логарифм по основанию e, где e — иррациональная константа, равная приблизительно 2.71828. Обозначение — ln(x) показатель степени, в которую
нужно возвести число 2.71828, чтобы получить x.

Следует также учитывать, что при ΔtБ / Δtм > 1.8, используется формула для нахождения среднелогарифмического температурного напора.
Подробное описание расчета по этой формуле, можно посмотреть на странице сайта: .

Расчет мощности обогревателя : Полезная информация

Приблизительный расчет мощности обогревателя:

Прежде чем выбирать обогреватель, необходимо рассчитать минимальную тепловую мощность, необходимую для вашего конкретного помещения.

Обычно для приблизительного расчета достаточно объем помещения в кубических метрах разделить на 30. Таким способом обычно и пользуются менеджеры, консультируя покупателей по телефону. Такой расчет позволяет быстро приблизительно прикинуть какая совокупная тепловая мощность может понадобиться для прогрева помещения.

Например, для выбора тепловой пушки в комнату (или офис) площадью 50 м² и высотой потолков 3 м (150 м³) потребуется 5.0 кВт тепловой мощности. Наш расчет выглядит так: 150 / 30 = 5.0

Такой вариант расчетов в основном используется для расчетов дополнительного обогрева в те помещения, где уже есть какое-то отопление и необходимо просто догреть воздух до комфортной температуры.

Однако, такой способ расчета не подойдет для неотапливаемых помещений, а также если необходимо помимо объема помещения учесть разницу температур внутри-снаружи, и конструктивные особенности самого здания (стены, изоляцию и т. п.)

Точный расчет тепловой мощности обогревателя:

Для расчета тепловой мощности, учитывающего дополнительные условия помещения и температурные режимы, используется следующая формула:

V × ΔT × K = ккал/час, или

V × ΔT × K / 860 = кВт, где

V — Объем обогреваемого помещения в кубических метрах;

ΔT — Разница между температурами воздуха внутри и снаружи. Например, если температура воздуха снаружи -5 °C, а необходимая температура внутри помещения +18 °C, то разница температур составляет 23 градуса;

K — Коэффициент теплоизоляции помещения. Он зависит от типа конструкции и изоляции помещения.

K=3.0–4.0 — Упрощенная деревянная конструкция или конструкция из гофрированного металлического листа. Без теплоизоляции.

K=2.0–2.9 — Упрощенная конструкция здания, одинарная кирпичная кладка, упрощенная конструкция окон и крыши. Небольшая теплоизоляция.

K=1.0–1.9 — Стандартная конструкция, двойная кирпичная кладка, небольшое число окон, крыша со стандартной кровлей. Средняя теплоизоляция.

K=0.6–0.9 — Улучшенная конструкция здания, кирпичные стены с двойной изоляцией, небольшое число окон со сдвоенными рамами, толстое основание пола, крыша из высококачественного теплоизоляционного материала. Высокая теплоизоляция.

При выборе значения коэффициента теплоизоляции обязательно нужно учитывать старое это здание или новое, т. к. старые здания требуют большего количества тепла для прогрева (соответственно, значение коэффициента должно быть выше).

Для нашего примера, если учесть разницу температур (например, 23 °C) и уточнить коэффициент теплоизоляции (например, у нас старое здание с двойной кирпичной кладкой, возьмем значение 1.9), то расчет необходимой тепловой мощности обогревателя будет выглядеть так:

150 × 23 × 1.9 / 860 = 7.62

Т. е., как видите, уточненный расчет показал, что для прогрева данного конкретного помещения понадобится большая тепловая мощность обогрева, чем была рассчитана по упрощенной формуле.

Подобный способ расчета применим к любым видам теплового оборудования, за исключением, возможно, инфракрасных обогревателей, т. к. там используется принцип ощущаемого тепла. Для любых других видов обогревателей — водяных, электрических, газовых и жидкотопливных, он подходит.

После вычисления необходимой тепловой мощности можно приступать к выбору типа и модели обогревателя.

Расчет мощности обогревателя: влияющие факторы

Все пользуются электричеством в наши дни, невозможно представить современную квартиру и без отопления

Однако для того чтобы не переплачивать по счетам, важно правильно рассчитать мощность обогревателя в доме. Что же это значит? Необходимо учесть площадь помещения и то, насколько мощный отопительный прибор находится в нем

Мощность радиаторов измеряется в таких единицах, как киловатт (квт) и для правильного расчета количества тепла, необходимого для отапливаемого объекта, нужно воспользоваться универсальной формулой. Вы сможете просчитать, сколько тепла требуется конкретному объекту и как много тепла способны выделить обогреватели той или иной мощности.

Рассчитывать мощность обогревателя можно, используя специальную таблицу

Итак, самая простая формула для расчета количества тепла, нужного помещению в отопительный период, отталкивается от площади помещения.

Впрочем, если бы все было так просто, в интернете не появлялись бы каждый день целые форумы на тему того, как рассчитать мощность радиаторов.

Проблема в том, что расчеты зависят от целого ряда факторов:

  • Типрадиаторов. Например, батарея может быть масляного типа, однако бывают в то же время и инфракрасные батареи
  • Количество окон в помещении и их качество. От этого зависит такой параметр, как теплопотеря. Если в помещении установлены качественные пластиковые окна и потери тепла минимальны, то батареи могут быть просто теплые. Если же окна продуваются насквозь, то для обогрева помещения батареи должны быть очень горячими, компенсируя все теплопотери.
  • Толщина стен и материал. Снова, теплопотери в доме с тонкими стенами максимальны, а вот в помещении с надежными стенами их качественного материала тепло держится куда лучше.
  • Наличие или отсутствие утеплителей на стенах

Чтобы учесть все эти параметры, а может еще и ряд других, лучше воспользоваться специальным калькулятором расчета обогрева помещения. Такие специальные калькуляторы сегодня предлагают многие сайты в интернете.

Мощность масляного обогревателя

Расчеты соответствующей мощности должны выходить из требований, описанных выше, однако следует учесть еще и специфику данного типа отопительных приборов. Масляные радиаторы очень неравномерно прогревают помещение, нагревая воздух вокруг себя, однако плохо распределяя его по комнате

Мощность обогревателя кварцевого

В данном случае все немного сложнее. Обогреватели данного типа потребляют намного меньше энергии, чем другого типа – около 0,5 кВт в час. Дело в том, что и тип такого обогревателя совершенно другой. Внутрь специальной плиты упрятан нагревательный элемент, заставляющий прибор нагреваться и излучать тепло.

Среди преимуществ кварцевого обогревателя стоит отметить длительный срок службы и привлекательный внешний вид

Оно расходится по дому достаточно равномерно, при этом такие обогреватели имеют и ряд других преимуществ:

  • Радиатор не нагревается до чрезмерных температур. Максимальная температура элемента составляет около 95 градусов, что представляет собой вполне безопасный уровень в пожарном отношении.
  • Прибор не пересушивает воздух. Другие обогреватели очень сильно сушат воздух, из-за чего некоторые начинают себя плохо чувствовать, чихать и т.д., к тому же это вредно для растений в доме
  • Обогреватель не сжигает пыль, оставляя воздух в помещении чистым и свежим
  • Длительное аккумулирование тепла. Данный тип обогревателя работает как камень, нагревающийся на солнце и долгое время остающийся теплым даже по наступлению темноты. Полностью нагревается радиатор примерно 20 минут, а остывает крайне медленно.

Расчет обогрева помещения электричеством

Для того чтобы рассчитать обогрев конкретного помещения электричеством, в целом, лучше воспользоваться, опять же, онлайн калькулятором. Вам достаточно ввести в такой калькулятор такие данные как стоимость электричества в киловаттах в час, количество киловатт и КПД котла. В последнем пункте следует учесть как раз теплопотери и для каждого отдельно взятого дома цифра может быть разной. Если ваш дом идеально утеплен, окна пластиковые и надежные, материал стен оптимальный для исключения любых теплопотерь и так далее – то КПД котла может составить выше 95%. Если же все не так превосходно, то следует учесть сквозняк из щелей в окне или другие огрехи.

4 Сложная методика

Так как даже при укрупненном расчете погрешность оказывается довольно высокой, приходится использовать более сложный метод определения параметра нагрузки на отопительную систему. Чтобы результаты оказались максимально точными, необходимо учитывать характеристики дома. Среди них важнейшей является сопротивление теплопередачи материалов, использовавшихся для изготовления каждого элемента здания — пол, стены, а также потолок.

Рассматриваемая методика состоит из двух этапов. Сначала рассчитываются теплопотери по оконным проемам и наружным стенам, а затем — по вентиляции. В качестве примера можно взять следующие характеристики строения:

  • Площадь и толщина стен — 290 м² и 0,4 м.
  • В строении находятся окна (двойной стеклопакет с аргоном) — 45 м² (R =0,76 м²*С/Вт).
  • Стены изготовлены из полнотелого кирпича — λ=0,56.
  • Здание было утеплено пенополистиролом — d =110 мм, λ=0,036.

Исходя из вводных данных, можно определить показатель сопротивления телепередачи стен — R=0.4/0.56= 0,71 м²*С/Вт. Затем определяется аналогичный показатель утеплителя — R=0,11/0,036= 3,05 м²*С/Вт. Эти данные позволяют определить следующий показатель — R общ =0,71+3,05= 3,76 м²*С/Вт.

Фактические теплопотери стен составят — (1/3,76)*245+(1/0.76)*45= 125,15 Вт. Параметры температур остались без изменений в сравнении с укрупненным расчетом. Очередные вычисления проводятся в соответствии с формулой — 125,15*(22+15)= 4,63 кВт/час.

https://youtube.com/watch?v=0N2PpGgqh4A

На втором этапе рассчитываются теплопотери вентиляционной системы. Известно, что объем дома равен 490 м³, а плотность воздуха составляет 1,24 кг/м³. Это позволяет узнать его массу — 608 кг. На протяжении суток в помещении воздух обновляется в среднем 5 раз. После этого можно выполнить расчет теплопотерь вентиляционной системы — (490*45*5)/24= 4593 кДж, что соответствует 1,27 кВт/час. Остается определить общие тепловые потери строения, сложив имеющиеся результаты, — 4,63+1,27=5,9 кВт/час.

Результат будет максимально точным, если учитывать потери через пол и крышу. Сложные вычисления здесь проводить необязательно, допускается использование уточняющего коэффициента. Процесс расчетов теплонагрузки на систему обогрева отличается высокой сложностью. Однако его можно упростить с помощью программы VALTEC.

Фронтальное сечение

2. Подбор и расчет калориферов — этап второй. Определившись с необходимой тепловой мощностью водяного калорифера
приточной установки для обогрева требуемого объема, находим фронтальное сечение для прохода воздуха. Фронтальное
сечение — рабочее внутреннее сечение с теплоотдающими трубками, через которое непосредственно проходят потоки
нагнетаемого холодного воздуха. G — массовый расход воздуха, кг/час; v — массовая скорость воздуха — для оребренных калориферов принимается в
диапазоне 3 — 5 (кг/м²•с). Допустимые значения — до 7 — 8 кг/м²•с.

Ниже представлена таблица с данными двух, трех и четырехрядных воздухонагревателей типа КСк-02-ХЛ3 производства ООО Т.С.Т.
В таблице приводятся основные технические характеристики для расчета и подбора всех моделей данных теплообменников: площадь
поверхности нагрева и фронтального сечения, присоединительных патрубков, коллектора и живого сечения для прохода воды, длина
теплонагревательных трубок, число ходов и рядов, масса. Готовые расчеты на различные объемы нагреваемого воздуха, температуру
входящего воздуха и графики теплоносителя можно посмотреть, кликнув на модель выбранного Вами калорифера вентиляции из таблицы.

Калориферы КСк2Калориферы КСк3Калориферы КСк4

Наименование калорифераПлощадь, м²Длина теплоотдающего элемента (в свету), мЧисло ходов по внутреннему теплоносителюЧисло рядовМасса, кг
поверхности нагрева фронтального сечения сечения коллектора сечения патрубка живого сечения (средняя) для прохода теплоносителя
КСк 2-16.70.1970.001520.001010.000560.5304222
КСк 2-28.20.2440.65525
КСк 2-39.80.2900.78028
КСк 2-411.30.3370.90531
КСк 2-514.40.4301.15536
КСк 2-69.00.2670.000760.53027
КСк 2-711.10.3290.65530
КСк 2-813.20.3920.78035
КСк 2-915.30.4550.90539
КСк 2-1019.50.5811.15546
КСк 2-1157.11.6600.002210.001561.655120
КСк 2-1286.22.4880.00236174
Наименование калорифераПлощадь, м²Длина теплоотдающего элемента (в свету), мЧисло ходов по внутреннему теплоносителюЧисло рядовМасса, кг
поверхности нагрева фронтального сечения сечения коллектора сечения патрубка живого сечения (средняя) для прохода теплоносителя
КСк 3-110.20.1970.001640.001010.000860.5304328
КСк 3-212.50.2440.65532
КСк 3-314.90.2900.78036
КСк 3-417.30.3370.90541
КСк 3-522.10.4301.15548
КСк 3-613.70.2670.00116 (0.00077)0.5304 (6)37
КСк 3-716.90.3290.65543
КСк 3-820.10.3920.78049
КСк 3-923.30.4550.90554
КСк 3-1029.70.5811.15565
КСк 3-1186.21.6600.002210.002351.6554163
КСк 3-12129.92.4880.00355242
Наименование калорифераПлощадь, м²Длина теплоотдающего элемента (в свету), мЧисло ходов по внутреннему теплоносителюЧисло рядовМасса, кг
поверхности нагрева фронтального сечения сечения коллектора сечения патрубка живого сечения (средняя) для прохода теплоносителя
КСк 4-113.30.1970.002240.001010.001130.5304434
КСк 4-216.40.2440.65538
КСк 4-319.50.2900.78044
КСк 4-422.60.3370.90548
КСк 4-528.80.4301.15559
КСк 4-618.00.2670.00153 (0.00102)0.5304 (6)43
КСк 4-722.20.3290.65551
КСк 4-826.40.3920.78059
КСк 4-930.60.4550.90565
КСк 4-1039.00.5811.15579
КСк 4-11114.21.6600.002210.003121.6554206
КСк 4-12172.42.4880.00471307

Что делать, если при расчете, мы получаем требуемую площадь сечения, а в таблице для подбора калориферов
КСк, нет моделей с таким показателем. Тогда мы принимаем два или несколько калориферов одного номера,
чтобы сумма их площадей соответствовала или приближалась к нужному значению. Например, при расчете у нас
получилась требуемая площадь сечения — 0.926 м². Воздухонагревателей с таким значением в таблице нет.
Принимаем два теплообменника КСк 3-9 с площадью 0.455 м² (в сумме это дает 0.910 м²) и монтируем их по
воздуху параллельно.
При выборе двух, трех или четырех рядной модели (одинаковые номера калориферов — имеют одну и ту же площадь
фронтального сечения), ориентируемся на то, что теплообменники КСк4 (четыре ряда) при одной и той же входящей
температуре воздуха, графике теплоносителя и производительности по воздуху, нагревают его в среднем на восемь-двенадцать
градусов больше, чем КСк3 (три ряда теплонесущих трубок), на пятнадцать-двадцать градусов больше, чем КСк2
(два ряда теплонесущих трубок), но имеют большее аэродинамическое сопротивление.

Ремонт обогревателя своими руками: видео

В случае поломок обогревателя, предусмотренных гарантией, можно обращаться в центр. Однако если срок истек или поломка не входит под гарантийное обслуживание, можно попробовать справиться с неисправностью самостоятельно. Разумеется, сделать это можно только при наличии базовых навыков – если их нет, следует обратиться к специалистам.

Наглядная видеоинструкция по ремонту теплового вентилятора

А здесь ремонт масляного обогревателя.

И наконец, ремонт инфракрасного обогревателя.

Расчет нагревательных элементов

Электронагреватели широко используются в бытовых электроприборах: чайниках, утюгах, каминах, плитках, паяльниках и т. д. Чтобы изготовить или отремонтировать электронагреватель, нужно предварительно произвести электрические расчеты нагревательных элементов.

При прохождении электрического тока через неподвижные металлические проводники

единственным результатом работы тока является нагревание этих проводников, и, следовательно, по закону сохранения энергии вся работа, совершенная током, превращается в тепло.

Работа (в джоулях), совершаемая током при прохождении его через участок цепи, вычисляется по формуле:

А = Ult,

Как рассчитать мощность электрических обогревателей для гаража или склада

Этот алгоритм подходит для неотапливаемых хозяйственных помещений. Он учитывает объем, теплоизоляцию стен, разницу температур.

1. Определяем кубатуру помещения: v=s*h.

2. Высчитываем разницу температур (?T). От ожидаемой температуры отнимаем уличные показатели.

3. Полученные числа перемножаем вместе с коэффициентом термоизоляции (k) и выходит необходимое количество килокалорий в час, нужных для нагрева и поддержки тепла.

4. Все делим на 860. Результатом окажутся искомые киловатты.

Формула, позволяющая рассчитать мощность электрических обогревателей для гаража и других хозяйственных помещений: W=k*v*?T/860.

Коэффициент термоизоляции разный:

  • сооружения, не обладающие теплоизоляцией, – 4,0;
  • простые постройки из дерева или профнастила – от 3,0;
  • одинарная кирпичная кладки с простой оконной и кровельной конструкцией – от 2,0;
  • обычные постройки (советские многоэтажные дома, старые здания) – от 1,0;
  • современные сооружения или с дополнительным утеплением – от 0,6.

В качестве примера предлагаем рассчитать прогнозируемую мощность электрических обогревателей для гаража с кладкой из одинарного кирпича и несложной шиферной крышей. Допустим, его площадь – 24 кв. м, от пола до потолка – 3 м, температура на улице – -3 градуса, хотим получить тепло +15. Считаем по формуле:

W=2*24*3*(15 – (-3)/860=3 кВт, или W=2,9*24*3*(15 – (-3)/860=4,4 кВт.

Вывод: для обогрева в указанных условиях необходима производительность от 3 до 4,4 киловатта.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации