Андрей Смирнов
Время чтения: ~15 мин.
Просмотров: 0

От а до е: о чем говорит класс энергоэффективности новостройки

Вспомогательные элементы энергоэффективного дома

Одним из наиболее действенных вспомогательных элементов можно назвать систему «Умный дом»

Многие недооценивают важность электронного управления системами, считая их необдуманной тратой средств. На самом же деле, умный дом помогает максимально правильно распределить траты электричества и тепла

К примеру, система самостоятельно выключит освещение, если в комнате никого нет и, наоборот, включит при появлении человека в зоне действия датчиков движения или звука.

Прекрасно справляется умный дом и с регулировкой отопления помещений. Если в комнате нет людей, система самостоятельно снизит интенсивность нагрева радиаторов и, наоборот, повысит до оптимального в присутствии людей. То же касается и работы кондиционера в летний период.

Умный дом следит за работой всех систем жилища, обеспечивая экономиюФОТО: hitechbuilding.ru

Как самостоятельно снизить расход электроэнергии

Для этого существует ряд правил, которые нужно соблюдать. Среди них:

  1. Обязательная замена всех ламп накаливания и КЛЛ на светодиодные излучатели. Это в значительной мере снизит энергопотребление.
  2. Правильное использование электрических бытовых приборов. Если в кухне часто включается электрический чайник, то не стоит его наполнять до краёв. Нужно наливать в него воды ровно столько, сколько требуется в данный момент. В противном случае, электроэнергия расходуется на нагрев неиспользуемой воды по нескольку раз.
  3. Пользование холодильником. Нужно чётко понимать, для чего открывается его дверца. Алгоритм действий должен быть таков – «подумал-открыл-взял-закрыл» а не «открыл-подумал-взял-снова подумал-взял-закрыл». Если человек чётко понимает, что требуется взять, холодильник будет открываться реже и на более короткие промежутки времени, что позволит ему не вырабатывать лишний холод.

Сравнительная таблица различных типов лампФОТО: energozberejennia.in.ua

«Подводные камни» использования современных материалов

В современном строительстве активно используются разные виды утеплителей. Они призваны максимально утеплить фундамент, стены и крышу строения, снизив тем самым энергопотери. Самым популярными современными материалами являются: пенопласт (пенополистирол), ЭППС (экструдированный пенополистирол), минераловатные утеплители (стекловата, базальтовая или каменная вата), пенополиуретан, пеностекло, эковата, вермикулит, перлит.

Нужно понимать, что популярные экономварианты вроде пенопласта, газобетонных или пенобетонных плит могут стать тем самым подводным камнем, о который можно разбить саму идею энергоэффективности. Дело в том, что газо- и пенобетонные плиты часто изготавливаются с грубым нарушением технологии. Такой «утеплитель» не сделает дом надежным и прочным.

Пенопласт вообще относится к классу опасных материалов. Он очень горюч и начинает выделять вредные ядовитые вещества уже при температуре 60 градусов. Чаще всего человек во время пожара задыхается, получает смертельную дозу токсических веществ. Кроме того пенополистирол выделает токсичные вещества и при комнатной температуре. Наконец, он просто недолговечен: срок жизни пенопласта 40 лет, тогда как срок эксплуатации дома в среднем составляет 75 лет.

Эксплуатационные затраты и преимуществаэнергоэффективного дома

 Учитывая непрекращающийся в России рост цен на коммунальные услуги и энергоресурсы, дома такого класса дают возможность их владельцам значительно легче пережить повышающиеся затраты на услуги ЖКХ.

 Представленный ниже рост цен на электричество и газ, не говоря о росте стоимости горячей воды, технического обслуживания и эксплуатации жилья показывает, что он в разы превышает статистический рост зарплаты среднего работающего россиянина. В случае, сохранения имеющейся динамики роста цен на услуги ЖКХ и роста средней зарплаты, в течении нескольких лет, оплата коммунальных услуг составит существенный, а может быть и основной объем расходов в бюджете рядовых российских граждан.

ГодЭлектроэнергияОдноставочный тариф(газовая плита),руб./кВт·чГаз при наличииприборов учета,руб./м&sup3
202419.223.05
201912.99.01
20144.55.4
20093.011.99
20041.051.18

 По предварительным расчетам, дополнительные общестроительные затраты на обеспечение энергоэффективности здания и затраты на применение современного дорогостоящего инженерного оборудования, использующего альтернативные источники энергии, при действующих тарифах, оправдываются уже за 5-6 лет эксплуатации. С учетом прогнозируемого роста тарифов, в ближайшее время, срок окупаемости может сократиться до 2 лет.

 Оценка затрат на отопление обычного дома с энергопотреблением порядка 150 кВт•ч/м&sup2•год и энергоэффективного дома 25-30 кВт•ч/м&sup2•год позволяет сделать вывод, что затраты на различные виды энергоресурсов (газ, электричество и т.д.) при эксплуатации энергоэффективного дома снижаются в 5-6 раз, и в случае продолжения роста тарифов, о чем свидетельствуют последние 10 лет, экономия только на отоплении поможет сохранить ваш бюджет.

 Далее приведены расходы на отопление обычного дома с энергопотреблением 150 кВт•ч/м&sup2•год и энергоэффективного дома с энергопотреблением 28 кВт•ч/м&sup2•год с одинаковыми площадями по 300 м&sup2, и использованием различных типов энергоустановок (электрический котел, тепловой насос, газовый котел).

Расходы при эксплуатации элэктрического котла, руб./год

ГодОбычный домЭнергоэффективный дом
2024864&nbsp000161&nbsp280
2019580&nbsp500108&nbsp360
2014202&nbsp500 37&nbsp800
2009135&nbsp45025&nbsp284
200447&nbsp2508&nbsp820

Расходы при эксплуатации теплового насоса, руб./год

ГодОбычный домЭнергоэффективный дом
2024192&nbsp00043&nbsp027
2019129&nbsp00016&nbsp819
201445&nbsp000 10&nbsp080
200930&nbsp1003&nbsp715
200410&nbsp5001&nbsp960

Расходы при эксплуатации газового котла, руб./год

ГодОбычный домЭнергоэффективный дом
2024116&nbsp54521&nbsp755
201945&nbsp5568&nbsp504
201427&nbsp303 5&nbsp097
200910&nbsp0621&nbsp878
20045&nbsp9661&nbsp114

Эффективность и экономический расчет

При реализации мероприятий энергосбережения и повышения энергоэффективности различают:

  • начальные инвестиции (или увеличение, прирост инвестиций из-за выбора более эффективного оборудования). Например, замена ветхих окон в существующем доме на современные со стеклопакетами — инвестиции в энергосбережение, а отказ от установки ламп накаливания и люминесцентных ламп в строящемся доме в пользу светодиодных — увеличение инвестиций в энергосбережение (в доле превышения стоимости светодиодных светильников над обычными);
  • единовременные затраты на проведение энергоаудита (энергообследования);
  • единовременные затраты на приобретение и монтаж приборов учёта и систем автоматического контроля, удаленного снятия показаний приборов учёта;
  • текущие расходы на премирование (поощрение) ответственных за энергосбережение.

Как правило, эффекты от мероприятий энергосбережения рассчитывают:

  • как стоимость сэкономленных энергоресурсов или доля стоимости от потребляемых энергоресурсов, в том числе на единицу продукции;
  • как количество тонн условного топлива (т. у. т.) сэкономленных энергоресурсов или доля от величины потребляемых энергоресурсов в т. у. т.;
  • в натуральном выражении (кВт. ч., Гкал и т. д.);
  • как снижение доли энергоресурсов в ВВП в стоимостном выражении, либо в натуральных единицах (т. у. т., кВт. ч.) на 1 руб. ВВП

Эффекты от мероприятий энергосбережения можно разделить на несколько групп:

экономические эффекты у потребителей (снижение стоимости приобретаемых энергоресурсов);
эффекты повышения конкурентоспособности (снижение потребления энергоресурсов на единицу производимой продукции, энергоэффективность производимой продукции при её использовании);
эффекты для электрической, тепловой, газовой сети (снижение пиковых нагрузок приводит к снижению риска аварий, повышению качества энергии, снижению потерь энергии, минимизации инвестиций в расширение сети, и, как следствие, снижению сетевых тарифов);

рыночные эффекты (например, снижение потребления электроэнергии, особенно в пиковые часы, приводит к снижению цен на энергию и мощность на оптовом рынке электроэнергии — особенно важным является снижение потребления электроэнергии в вечернем пике);
эффекты, связанные с особенностями регулирования (например, снижение потребления электроэнергии населением уменьшает нагрузку перекрёстного субсидирования на промышленность — в настоящее время в СНГ население платит за электроэнергию, как правило, ниже её себестоимости, дополнительная финансовая нагрузка включается в тарифы для промышленности);
экологические эффекты (например, снижение потребления электрической и тепловой энергии в зимнее время приводит к разгрузке наиболее дорогих и «грязных» электростанций и котельных, работающих на мазуте и низкокачественном угле.);
связанные эффекты (внимание к проблемам энергосбережения приводит к повышению озабоченности проблемами общей эффективности системы — технологии, организации, логистики на производстве, системы взаимоотношений, платежей и ответственности в ЖКХ, отношения к домашнему бюджету у граждан).

Обычно началу реализации мероприятий по энергосбережению предшествует проведение энергоаудита.

№7. Источники электроэнергии

Энергосберегающий дом должен использовать электроэнергию максимально экономно и, желательно, получать ее из возобновляемых источников. На сегодняшний день для этого реализована масса технологий.

Ветрогенератор

Энергия ветра может преобразовываться в электричество не только большими ветряными установками, но и с помощью компактных «домашних» ветряков. В ветряной местности такие установки способны полностью обеспечивать электроэнергией небольшой дом, в регионах с невысокой скоростью ветра их лучше использовать вместе с солнечными батареями.

Сила ветра приводит в движение лопасти ветряка, которые заставляют вращаться ротор генератора электроэнергии. Генератор вырабатывает переменный нестабильный ток, который выпрямляется в контроллере. Там происходят зарядка аккумуляторов, которые, в свою очередь, подключены к инверторам, где и идет преобразование постоянного напряжения в переменное, используемое потребителем.

Ветряки могут быть с горизонтальной и вертикальной осью вращения. При разовых затратах они надолго решают проблему энергонезависимости.

Солнечная батарея

Использование солнечного света для производства электроэнергии не так распространено, но уже в ближайшем будущем ситуация рискует резко измениться. Принцип работы солнечной батареи очень прост: для преобразования солнечного света в электричество используется p-n переход. Направленное движение электронов, провоцируемое солнечной энергией, и представляет собой электричество.

Конструкции и используемые материалы постоянно совершенствуются, а количество электроэнергии напрямую зависит от освещенности. Пока наибольшей популярностью пользуются разные модификации кремниевых солнечных батарей, но альтернативой им становятся новые полимерные пленочные батареи, которые пока находятся в стадии развития.

Экономия электроэнергии

Полученное электричество нужно уметь расходовать с умом. Для этого пригодятся следующие решения:

  • использование светодиодных ламп, которые в два раза экономнее люминисцентных и почти в 10 раз экономнее обычных «лампочек Ильича»;
  • использование энергосберегающей техники класса А, А+, А++ и т.д. Пусть изначально она чуть дороже, чем те же устройства с более высоким энергопотреблением, в будущем экономия будет значительной;
  • использование датчиков присутствия, чтобы свет в комнатах не горел зря, и прочих умных систем, о которых было сказано выше;
  • если пришлось использовать электричество для отопления, то обычные радиаторы лучше заменить на более совершенные системы. Это тепловые панели, которые расходуют в два раза меньше электроэнергии, чем традиционные системы, что достигается за счет использования теплоаккумулирующего покрытия. Подобную экономию обеспечивают и монолитные кварцевые модули, принцип действия которых основан на способности кварцевого песка накапливать и удерживать теплоту. Еще один вариант – пленочные лучистые электрические нагреватели. Они крепятся на потолок, а инфракрасное излучение нагревает пол и предметы в комнате, за счет чего достигается оптимальный микроклимат помещения и экономия электричества.

Принципы экономии

Секрет энергосбережения экодома кроется в двух факторах: его конструкции и используемых для обеспечения энергией приборов. Строится энергосберегающий дом из особых материалов, которые располагают высокими теплоизоляционными характеристиками. Сама конструкция здания предполагает отсутствие «холодных мостиков» — мест, откуда в традиционных постройках ускользает тепло, из-за чего микроклимат в помещении нарушается.

Что касается оснащения дома, то предпочтение отдается приборам альтернативной энергетики. Например, для получения электроэнергии используются солнечные панели или ветряки. Для обогрева — тепловые насосы или котлы, работающие от солнечных батарей. Чтобы сэкономить на освещении, отдается предпочтение светодиодным лампам. Некоторые люди не останавливаются даже на этом: при наличии хозяйства со скотом или птицей, они самостоятельно обеспечивают себя биогазом, на котором можно готовить или использовать его как топливо.

Преимущества энергосберегающего дома:

  • быстрая застройка (от 2-х до 6-ти месяцев);
  • отсутствие негативного воздействия на окружающую среду;
  • проживание в экологически чистой и безопасной постройке;
  • снижение трат или полное их отсутствие на оплату услуг ЖКХ;
  • создание здорового микроклимата для проживающих в нем людей;
  • автономность и независимость от общих сетей электричества, газа, водоснабжения.

Недостатки:

  • сложность самостоятельного возведения;
  • дороговизна услуг застройщиков и строительства в целом;
  • большие (но окупаемые) вклады в приборы альтернативной энергетики;
  • сложности на этапе разработки проектной документации и утверждения проекта.

Энергоэффективное отопление

Весомой статьей расходов в доме является отопление. Уменьшить расходы на эксплуатацию отопительной системы можно, используя энергосберегающие технологии для частного дома.
Системы отопления дома классифицируются по типу энергоносителя:

  • Газ. Самая распространенная и экономная отопительная система, не требующая больших финансовых вложений. Обычные газовые котлы расходуют нерационально много топлива. Сжигаемый газ нагревает теплообменник и улетучивается в дымоход, имея еще высокую температуру. В энергосберегающем доме устанавливают конденсационный котел, который с помощью второго теплообменника повышает КПД котла, забирая тепло выхлопных газов.
    Хорошим выбором, с финансовой точки зрения, является система газ-комби-терм. Это отопление с одновременным нагреванием воды. Управление осуществляется блоком автоматики. Это решение практически уже стало стандартным.
  • Электричество. Энергоемкая система отопления. Сократить расходы электрических котлов может помочь установка двухтарифного счетчика и теплоаккумулятора. В ночное время котел работает по низкому тарифу, аккумулятор заряжается. Днем котел работает по необходимости от аккумулятора. Вообще, системы отопления с использованием электроэнергии не рекомендуются.
  • Твердое топливо. Твердотопливный котёл протапливают отходами и древесным мусором. Энергосберегающий котёл с двойным циклом сжигает отходы без остатка, не выбрасывая дыма. Этот вариант повышает энергоэффективность дома.
  • Жидкое топливо. Расход топлива зависит от конструктивных особенностей горелки Бабингтона и качества самого оборудования.

  • Энергия солнца. Гелиосистемы. Они работают совместно с другими обычными источниками тепла, традиционными котлами. Применение солнечных батарей повышает эффективность системы отопления, но не заменяет ее. Солнечные коллекторы могут обеспечить около 50% потребности в горячей воде, а в южных широтах в период с апреля по октябрь на 100%. В Белоруссии разработан солнечный коллектор, имеющий себестоимость около 10$ на 1 м2, соответствующий по своим основным характеристикам западным образцам. Много положительных отзывов о гелиосистемах Sint Solar, как о сберегающих инженерных системах современных домов.
  • Энергия окружающей среды. Тепловые насосы. Если вы хотите построить энергосберегающий дом и не слишком стеснены в материальных средствах, выбирайте тепловой насос. Они бывают различных типов. Источниками тепла для оборудования служат грунт, вода, горные породы или воздух. Первоначальные затраты на приобретение оборудования и монтаж достаточно высоки, но окупаются при длительной эксплуатации.
    Устройство состоит из конденсатора, испарителя, компрессора, вентиля, трубной разводки. Действует насос по принципу Карно, как холодильник, только наоборот. Около 70% домов в Швеции и Дании оборудованы такими насосами.
    Энергонезависимый дом имеет, как правило, альтернативные источники тепла – энергию солнца и недр земли. Горячее водоснабжение работает на установках возобновляемой энергии: солнечных коллекторах, тепловых насосах.

Экономическая целесообразность дополнительного утепления

Основной показатель экономической эффективности дополнительного утепления дома – срок окупаемости системы утепления.

Интересен опыт пользователя с ником Андрей А.А, сравнившего затраты на отопление в режиме ПМЖ утеплённого и неутеплённого дома. Для чистоты эксперимента за исходные условия принимаем следующие данные:

  • отопление магистральным газом;
  • теплопотери через ограждающие конструкции – 300кВт/ч/(кв.м.*год);
  • дом имеет срок службы в 33 года.

Для начала я подсчитал годовые затраты на отопление в режиме ПМЖ без дополнительного утепления. После проведённых мною расчётов затраты на отопление неутеплённого дома в 120 кв.м, при его теплопотерях в 300кВт/ч/(кв.м.*год), составили 32 тыс.руб. в год (при условии, что цена за 1 м3 газа до 2030 составит 7.5 руб).

Теперь подсчитаем, какую сумму можно сэкономить, если как следует утеплить дом.

По моим расчётам, дополнительное утепление снизит теплопотери моего жилья приблизительно в 1,6 раза. Отсюда, при затратах на отопление, равных 1,1 млн. рублей за 33 года (32 т.р. в год х 33 года), после утепления можно на стоимости энергии сэкономить 1,1-1,1/1,6=400тыс. руб.

Чтобы получить 100% экономический эффект от дополнительного утепления, необходимо, чтобы сумма, потраченная на дополнительное утепление, не превысила половину суммы, сэкономленной на стоимости энергии.

Т.е. для данного примера затраты на утепление не должны превысить 200 тыс. рублей.

Также интересен подход к расчёту рентабельности от дополнительного утепления форумчанина с ником mfcn:

– Рассмотрим следующие гипотетические условия:

  • в доме +20°C, на улице -5°C;
  • отопительный период – 180 дней;
  • дом – с однослойным каркасом, стоимостью 8000 руб/м3, утеплённый минеральной ватой по 1500 руб/м3;
  • стоимость монтажа – 1000 руб/м3 утепления;
  • шаг каркаса – 600 мм, толщина – 50 мм.

Исходя из этих данных, кубометр утепления стоит 3000 руб.

Буду рассматривать теплопотери через стены дома 10х10 м с высотой потолков 3 м. Отсюда 5 см дополнительного утепления стоят 120х0,05х3000=18000 руб. Срок службы – 50 лет. Стоимость тепла – 1,5 руб/кВт*ч.

После всех расчётов mfcn пришёл к выводу, что оптимальная толщина утеплителя для этого здания должна быть не более 20 см: дальнейшее увеличение толщины утеплителя экономически нерентабельно.

По мере увеличения толщины утеплителя (больше 20 см) стоимость вашего жилья растёт линейно, а экономия от утепления значительно уменьшается.

Посмотрим, оправдан ли такой подход.

Утеплять стены необходимо! Толщину утеплителя нужно выбирать, проанализировав, какой экономический эффект даст увеличение толщины утеплителя по сравнению с исходной конструкцией.

Учитывая, что стоимость магистрального газа растёт быстрее инфляции, то можно предположить, что в будущем цены на газ сравняются с ценами на другие энергоносители (которые также растут). Поэтому при расчёте срока окупаемости утепления брать сегодняшние цены на газ в перспективе, что в будущем они останутся на прежнем уровне, через 10-20 лет, неправильно.

Есть такая вещь, как переход количества в качество. При 15 см утепления и более отпадает нужда в батареях, а вот при 10 см они всё ещё нужны. При 25 см утепления можно сидеть только на ночном тарифе, отапливаясь электричеством, а если коттедж теплоинерционный с минимальными теплопотерями, то экономия будет ещё больше.

№6. Отопление и горячее водоснабжение

Гелиосистемы

Самый экономный и экологичный способ отапливать помещение и подогревать воду – это использовать энергию солнца. Возможно это благодаря солнечным коллекторам, установленным на крыше дома. Такие устройтсва легко подсоединяются к системе отопления и горячего водоснабжения дома, а принцип их работы заключается в следующем. Система состоит из самого коллектора, теплообменного контура, бака-аккумулятора и станции управления. В коллекторе циркулирует теплоноситель (жидкость), который нагревается за счет энергии солнца и через теплообменник отдает тепло воде в баке-аккумуляторе. Последний за счет хорошей теплоизоляции способен долго сохранять горячую воду.  В этой системе может быть установлен нагреватель-дублер, который догревает воду до необходимой температуры в случае пасмурной погоды или недостаточной продолжительности солнечного сияния.

Коллекторы могут быть плоскими и вакуумными. Плоские представляют собой коробку, закрытую стеклом, внутри нее находится слой с трубками, по которым циркулирует теплоноситель. Такие коллекторы более прочные, но сегодня вытесняются вакуумными. Последние состоят из множества трубок, внутри которых находятся еще трубка или несколько с теплоносителем. Между внешней и внутренней трубками – вакуум, который служит теплоизолятором. Вакуумные коллекторы более эффективны, даже зимой и в пасмурную погоду, ремонтопригодны. Срок службы коллекторов около 30 лет и более.

Тепловые насосы

Тепловые насосы используют для отопления дома низкопотенциальное тепло окружающей среды, в т.ч. воздуха, недр и даже вторичное тепло, например от трубопровода центрального отопления. Состоят такие устройства из испарителя, конденсатора, расширительного вентиля и компрессора. Все они связаны замкнутым трубопроводом и функционируют на основе принципа Карно. Проще говоря, теплонасос подобен по работе холодильнику, только функционирует наоборот. Если в 80-х годах прошлого века тепловые насосы были редкостью и даже роскошью, то уже сегодня в Швеции, например, 70% домов отапливаются подобным образом.

Конденсационные котлы

Обычные газовые котлы работают по достаточно простому принципу и расходуют при этом много топлива. В традиционных газовых котлах после сжигания газа и нагревания теплообменника топочные газы улетучиваются в дымоход, хотя несут достаточно высокий потенциал. Конденсационные котлы за счет второго теплообменника отбирают теплоту у конденсируемых паров воздуха, за счет чего КПД установки может превышать даже 100%, что вписывается в концепцию энергосберегающего дома.

Биогаз в качестве топлива

Если скапливается много органических отходов сельского хозяйства, то можно соорудить биореактор для получения биогаза. В нем биомасса благодаря анаэробным бактериям перерабатывается, в результате чего образуется биогаз, состоящий на 60% из метана, 35% — углекислого газа и на 5% из прочих примесей. После процесса очистки он может использоваться для отопления и горячего водоснабжения дома. Переработанные отходы преобразуются в отличное удобрение, которое может использоваться на полях.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации